
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/early/2010/10/02/0278364910381416
The online version of this article can be found at:

 
DOI: 10.1177/0278364910381416

 published online 4 October 2010The International Journal of Robotics Research
Benjamín Tovar, Luigi Freda and Steven M LaValle

Learning Combinatorial Map Information from Permutations of Landmarks
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 
 

 
 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://ijr.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 at NORTHWESTERN UNIV LIBRARY on December 9, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/early/2010/10/02/0278364910381416
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/


Learning Combinatorial Map
Information from Permutations of
Landmarks

The International Journal of
Robotics Research
00(000) 1–13
©The Author(s) 2010
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364910381416
ijr.sagepub.com

Benjamín Tovar1, Luigi Freda2, Steven M. LaValle3

Abstract
This paper considers a robot that moves in the plane and that is able to sense only the cyclic order of landmarks
with respect to its current position. No metric information is available regarding the robot or landmark positions;
moreover, the robot does not have a compass or odometers (i.e., knowledge of coordinates). We carefully study the
information space of the robot, and establish its capabilities in terms of mapping the environment and accomplish-
ing tasks, such as navigation and patrolling. When the robot moves exclusively inside the perimeter of the set of
landmarks, the information space may be succinctly characterized as an order type that provides information pow-
erful enough to determine which points lie inside the convex hulls of subsets of landmarks. In addition, if the robot
is allowed to move outside the perimeter of the set of landmarks, the information space is described with a swap
cell decomposition, that is, an aspect graph in which each aspect is a cyclic permutation of landmarks. Finally, we
show how to construct such decomposition through its dual, using two kinds of feedback motion commands based
on the landmarks sensed.

Keywords
Mapping, mobile and distributed robotics SLAM, localization, learning and adaptive systems, cognitive robotics

1. Introduction

In this paper we study a robot moving in the plane with
very limited sensing: it knows only the cyclic ordering
of landmarks as they appear from the robot’s current
position (no distance information can be measured and
there are no other sensors). Given the sensor limita-
tions, we avoid estimation of the position of the robot
and of landmarks, and instead concentrate on the land-
marks’ relative orderings to construct the algorithms.
Eventually, the representation of the environment (i.e.,
the map), is a sequence of cyclic permutations of land-
marks. After establishing what the robot can learn
from its simple sensor, we then illustrate the kinds of
tasks that it can solve, including surveillance/patrolling
around the perimeter (convex hull) of landmarks.

In robotics, landmarks have classically been used for
navigation (Betke and Gurvits 1994; Borenstein et al.
1996; Hu and Gu 2000; Hayet et al. 2002; Steck and
Mallot 2000; Shimshoni 2002). For example, in works
such as Lazanas and Latombe (1992) and Tashiro et al.
(1995), robot paths that minimized localization errors
were found using pre-images (Erdmann 1986) for a
known arrangement of landmarks. In more recent years,
landmarks have been used to construct geometric mod-
els of the environment, along with an explicit estimation

of the robot position. In the most well-known form of
simultaneous localization and mapping (SLAM) (Sim-
mons and Koenig 1995; Thrun et al. 1998; Monte-
merlo et al. 2002; Yamauchi et al. 2002; Parr and Eli-
azar 2003), the addition of some Gaussian assumptions
allows the estimation of the position of the robot as
well as the position of landmarks by probabilistic filters.
These approaches have achieved impressive implemen-
tation success, but the probabilistic information spaces
they generate are hard to characterize given that they
are infinite-dimensional.

In works such as those of Bulata and Devy (1996),
Dean et al. (1993), Dudek et al. (1993), Kuipers
(2000), Kuipers et al. (1993), Remolina and Kuipers
(2004), Shatkay and Kaelbling (1997) and Smith and
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Fig. 1. The landmark order detector gives the cyclic order
of the landmarks around the robot. Note that only the cyclic
order is preserved, and that the sensed angular position of each
landmark may be quite different from the real one. Thus, the
robot knows only that the sequence of landmarks detected is
[7,2,8,5,3,6,1,4], up to a cyclic permutation.

Cheeseman (1986), the environment is represented with
graph-like spatial descriptions. In this context, a vertex
in a graph represents a place, and edges represent possi-
ble paths among places. In this context, places are com-
monly defined as environment locations from which a
certain arrangement of landmarks is visible.

In this paper we follow a minimalist approach, in
which our goal is to have the robot and its sensors
to be as simple as possible. This philosophy has been
successful in several works (e.g., Brost (1991), Erd-
mann and Mason (1988) and Levitt and Lawton (1990);
Goldberg (1993)). Is it really necessary for the robot to
build an explicit representation of the environment? Is
knowing the exact position of the robot crucial for the
completion of the task? While the models and assump-
tions used in this paper were inspired by basic sensing
issues in robotics, there are also closely related to sensor
networks, which are becoming increasingly important
in security applications: the landmarks can be imag-
ined as “sensors” in a network, and the robot provides
the “communication” link between them. We hope that
the insights obtained from our work may help in the
development of robust, cost-effective robotic systems
and sensor networks applied to surveillance, tracking,
pursuit-evasion, and other sensor-based problems. In
this sense, the work presented in Levitt and Lawton
(1990) is similar to the ideas presented here; however,
in this paper the cyclic permutation sensor amounts to
detecting when two landmarks cross in the field of the
robot, whereas in Levitt and Lawton (1990), the sensor
detects when the robot becomes collinear with a pair of
landmarks. Therefore, the sensor considered in Levitt
and Lawton (1990) is more powerful.

The ideas in this paper are based on the material
presented in Tovar et al. (2007) and Freda et al. (2007).

2. Basic Definitions

We model a robot as a moving point in the plane. Its
configuration q ∈ SE( 2) = R

2 × S1 is described by its
position in R

2 and a heading angle in S1. Let L be a
finite set of n points in R

2, and let s : R
2 → {0, . . . , n}

be a mapping such that every point in L is assigned a
different integer in {1, . . . , n}, and s( p) = 0 if p /∈ L.
The mapping s is referred to as a landmark identifica-
tion function and L is referred to as the set of landmarks.
For landmark p ∈ L, s( p) is referred to as the landmark
label of p. In the following, for any landmark pi ∈ L, the
subscript indicates the landmark label (i.e., s( pi) = i).

Let L be the set of all possible finite subsets of R
2

(i.e., L is the set of all possible landmarks arrange-
ments). We define the state as the pair x = ( q, L), and
the state space X as the set of all such pairs (SE( 2) ×L).
A landmark sensor is defined in terms of a landmark
identification function s. Such a sensor is called a
landmark cyclic order detector, and it is denoted with
lcds( x), for x ∈ X . The landmark order detector gives
the counterclockwise cyclic permutations of landmark
labels as seen from the current state (see Figure 1).
Note that the robot does not have any coordinate esti-
mate of its position, nor the position of the landmarks,
and that the landmark order detector does respect the
cyclic order of landmarks, but does not measure the
angle between them. No metric information is read-
ily available, and moreover, lcds( x) does not provide
by itself any notion of front, back, left or right to the
robot. We assume that landmarks do not obstruct the
visibility of the robot (i.e., the landmarks are considered
transparent). When two landmarks appear in the same
angular position, their ordering in the sensor reading is
arbitrary, but does not change until the crossing is com-
pleted. All of our results do hold for opaque landmarks,
but we ignore this case for clarity of exposition. We
also assume that the landmarks are in general position
(i.e., no three landmarks are collinear). Furthermore,
the landmark order detector has infinite range. (We dis-
cuss how some of these assumptions may be removed
in Section 8.)

When does the perceived cyclic permutation change?
Each pair of landmarks supports two pairs of half lines,
such that each half line has its endpoint in one land-
mark, but does not contain the other. Specifically, for
two different landmarks pi, pj ∈ L (see Figure 2), con-
sider the half line that starts at pi, and is collinear with
but does not contain pj. We refer to such a half line as
the swap-line �pipj The swap-line �pjpi is defined in a sim-
ilar manner. Note that when the robot is arbitrarily close
to �pipj or �pjpi, pi and pj appear consecutive in lcds( x),
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Fig. 2. Swap lines. Crossing a half line swaps the order of
the respective landmarks in the reading of the landmark order
detector. Such half lines are called swap lines.

and when the robot crosses one of the swap lines, there
is a change in the cyclic permutation sensed.

We assume that the robot can choose a particular
landmark label s( p) and move towards the landmark
position p. This landmark tracking motion primitive
is denoted by track( s( p) ). For simplicity, we assume
that when the robot arrives at p, lcds( x) no longer
detects the landmark just tracked1. The motion prim-
itive track( s( p) ) therefore may terminate only when
there is a change in the reading of lcds( x). Although
we do not discuss here the real implementation of
the landmark order detector, it can be constructed, for
example, with an omnidirectional camera with stan-
dard feature tracking software (i.e., filter-based track-
ing (Thrun et al. 1998; Montemerlo et al. 2002; Lowe
2003; Thrun et al. 2005)).

3. Order Types and Landmarks

Given the sensing and control models introduced, con-
sider the robot as it moves in the environment. The
only information received consists of the changes in
the cyclic permutations (e.g., for three landmarks, only
two sensing readings are possible). Purely by sens-
ing, the robot cannot even know if it is inside the
convex hull defined by the three landmarks (see Fig-
ure 3). Nevertheless, consider the robot traveling from
the landmark with label 1 to the landmark with label 2.
Since the reading from the landmark order detector fol-
lows a counterclockwise order, the robot can determine
whether the landmark with label 3 is to the left or the
right of the directed segment that connects the land-
marks with labels 1 and 2. Thus, the robot can combine
sensing with action histories to recover some structure
of the configuration of landmarks.

We generalize the previous idea to encode informa-
tion states with the concept of order type. Two ordered

Fig. 3. Cyclic permutations of three landmarks. Purely by
sensing, the robot cannot even know if it is inside the con-
vex hull defined by the three landmarks. Nevertheless, the
orientation of the triangle (the counterclockwise cyclic order
of the landmarks as sensed from inside their convex hull) can
be determined with an information state.

sets A and B are said to have the same order type if there
is a bijection f : A → B such that for all a1, a2 ∈ A,
a1 ≤A a2 ⇔ f ( a1) ≤B f ( a2), in which ≤A and ≤B

are the relations defining the orders of A and B, respec-
tively. Think of this definition in the following manner.
Sets A and B have the same order type if they have the
same number of smallest elements, the same number
of second-to-smallest elements, etc. For a configuration
of labeled points, the order relation ≤ can be defined
through the relative orientation of three points, which is
computed as follows (Goodman and Pollack 1983). The
ordered triplet of points p1, p2, p3, with pi =( xi, yi), is
said to have positive orientation if the determinant

∣
∣
∣
∣
∣
∣

1 x1 y1

1 x2 y2

1 x3 y3

∣
∣
∣
∣
∣
∣

(1)

is strictly bigger than 0, and this is denoted by p1p2p+
3 .

Negative orientation is defined in a similar manner, and
denoted by p1p2p−

3 . Given our general position assump-
tion, this determinant cannot be zero. The order type of
a labeled configuration of points P is determined by the
relative orientation of each triplet of points in P. The
order type of the configuration of points can be encoded
by a function defined as follows:

�( i, j) = {k | pipjp
+
k for pi, pj, pk ∈ P}. (2)

The function � takes the indices i, j of two points
pi, pj ∈ P, and returns the indices corresponding to
the points in P \ {pi, pj} positively oriented with respect
to pi and pj (in that order). For example, following
Figure 1, �( 3, 7) = {2, 5, 8}, and �( 7, 3) = {1, 4, 6}.
Alternatively, the order type can be specified with the
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function λ( i, j) = |�( i, j) |. It is not immediately clear
that, once the function λ is known, � can be deduced.
Surprisingly, this is not only true for the plane, but for
any dimension (Goodman and Pollack 1983). The order
types generalize the common notion of linear sorting
for real numbers into the so-called geometric sorting.
Here, minimum and maximum become extremal sub-
sets of points in P. For example, if λ( i, j) = 0, then
there are no points to the left of the directed edge pipj,
and both pi and pj belong to the boundary of the convex
hull. Note that the other direction works too; in this case
λ( j, i) will be a non-unique maximum of λ.

3.1. Oriented Matroids

Consider a line arrangement in the plane, and the
decomposition it induces. Some properties of this
decomposition do not depend on the fact that the lines
are straight, but only on whether any two of them inter-
sect in at most one point. These lines (that are not
necessarily straight) are called pseudo-lines, and such
an arrangement is called an arrangement of pseudo-
lines. We refer to properties such as these as combi-
natorial properties (Björner et al. 1993). For a given
order type, � is independent of homogeneous transfor-
mations applied to the set of points. In addition, we have
great freedom in moving points around before the value
of � changes. There is a strong connection between the
combinatorial properties of pseudo-line arrangements
and sets of points. In fact, they are the same, and the
structures that make this apparent are called oriented
matroids.

Oriented matroids are combinatorial abstractions of
point configurations over the reals, of real hyperplane
arrangements, of convex polytopes, and of directed
graphs (Björner et al. 1993). There are several equiv-
alent ways of defining an oriented matroid. In our case,
given that we are dealing with points in the plane,
the most useful is in terms of chirotopes (Björner
et al. 1993), defined as the sign of the determinant in
Equation 1 for each triplet of points. This allows us
to describe the combinatorial structure of the set of
landmarks with the following axioms (Knuth 1992).

Axiom 1. The orientation of a triangle is independent
of a cyclic reordering of its vertices:

p1p2p+
3 =⇒ p3p1p+

2 .

Axiom 2. A triangle cannot have two orientations:
p1p2p+

3 =⇒ ¬p1p3p+
2 .

Axiom 3. A triangle has at least one orientation:
p1p2p+

3 ∨ p1p3p+
2 .

Axiom 4. Inside a triangle relation:
p1p2p4 ∧ p2p3p4 ∧ p3p1p4 =⇒ p1p2p3.

Axiom 5. Transitivity relation:
p4p5p1 ∧ p4p5p2 ∧ p4p5p3 ∧ p4p1p2 ∧ p4p2p3 =⇒

p4p1p3.

We use � to record partial information about the
landmarks’ arrangement as the robot moves. Given the
previous axioms, it is clear that � cannot have arbi-
trary values. What is perhaps surprising is that even if
the arguments for � satisfy the previous axioms, they
may not correspond to points in the Euclidean plane.
In particular, they may fail to satisfy Pappus’s hexagon
theorem (Knuth 1992; Björner et al. 1993)2. Those ori-
ented matroids that do correspond to points in the plane
are called realizable. In fact, given our definition of
order type based on determinants, order type is just a
synonym for realizable oriented matroid. In Goodman
and Pollack (1983), the number of realizable oriented
matroids for n points in the plane was found to be
2θ(n log n).

3.2. The Information Space

Consider the state x =( q, L), which is unknown to the
robot. Although x is unknown, information about q and
L is available to the robot. In particular, partial knowl-
edge of the order type of L can always be computed.
Also, using tracking commands together with readings
from lcds( x), the position of the robot can be deter-
mined to be either on a landmark, or in the segment
between two landmarks. An information state is defined
as the pair ( Q′, �′), in which Q′ refers to the possible
positions of the robot with respect to the landmarks, and
�′ is the partial knowledge of �. The information space
I is the space of all such pairs.

Let I( L) be the information states for which �′ does
not contradict the configuration of landmarks in the
environment. Note that, up to a relabeling of the land-
marks, |I( L) | is finite. This is because for n landmarks
there are 2θ(n log n) possibilities for �′. Also, the num-
ber of distinct sets Q ′ of possible positions is bounded
by the number of combinatorial elements of the line
arrangement drawn from the lines passing through each
pair of landmarks.

3.3. Retrieving the Order Type

The order type concepts extend naturally to our land-
mark setting, using the landmark labels as the indices
for �. Of course, the robot cannot compute the deter-
minants, because it lacks any coordinates. Nevertheless,
it is possible to compute � for any pair of landmark
labels. For this computation we establish the following
lemma:.

Lemma 1. Let the output of the sensor be of the form
lcds( x) = [X , i, Y , j, Z], in which X , Y , Z are subse-
quences of lcds( x) separated by the labels correspond-
ing to landmarks pi and pj. If the robot is on the line
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segment pipj, and its heading is pointing towards pj,
then �( i, j) = X ∪ Z and �( j, i) = Y.

Proof. To determine �( i, j), we are looking for the
landmarks to the left of the directed segment pipj. Con-
sider any point in the interior of pipj as a pivot of a
counterclockwise radial sweep starting at pj and ending
at pi. It is clear that all the landmarks swept lie to the
left of pipj. If the robot is placed according to the con-
ditions of the lemma, this sweep can be obtained from
the cyclic sequence given by lcds( x), starting at j, until
i is found. By symmetry, �( j, i) is also found.

Strategy 1. Given landmarks pi and pj, determine
which landmarks lie to the left of the directed line from
pi to pj �( i, j).

Description. The value of �( i, j) is determined as fol-
lows. The robot is commanded to track landmark pi

until i disappears from lcds( x). This means that now the
robot is at pi. Next, the robot is commanded to track pj

and, at the moment when i is detected again, the robot is
guaranteed to be on pipj, pointing towards pj. Applying
Lemma 1 to the sensor reading, �( i, j) and �( j, i) are
found.

4. Solving Some Simple Robotic Tasks

In this section we present some simple tasks that can be
solved using the concepts presented previously. In the
following examples, L is the set of landmarks detected,
and n = |L|.

4.1. Landmarks Inside a Triangle

The task is to compute the subset of landmarks of L
that are inside of the triangle defined by the landmarks
labeled with i, j and k. In other words, if k ∈ �( i, j),
the robot should determine �( i, j) ∩�( j, k) ∩�( k, i), or
if k /∈ �( i, j), then �( j, i) ∩�( i, k) ∩�( k, j) should be
computed. These two cases correspond to the two pos-
sible orientations of a triangle (as defined before with
the determinant). Since both the orientation of the tri-
angle and the needed values of � can be computed
with Lemma 1, we use this simple example to introduce
a motion strategy that deals with control uncertainty.
Refer to Figure 4. The problem here is that the internal
angle of the triangle at landmark i is obtuse. This gives
little margin of error for the control, and the triangle
orientation may not be computed correctly. As it can be
seen for landmarks j and k with acute angles, the error
in the control should be almost π before the orientation
is computed incorrectly.

Fig. 4. Triangle orientation error. A small control error may
find the wrong orientation for the triangle. On the bottom,
if the robot follows the top-left arrow, the orientation is not
computed correctly.

Strategy 2. Robust triangle orientation measurement.

Description. Given that a triangle has at most one
obtuse angle, the robot repeats Strategy 1 three times,
one for each edge of the triangle. If this strategy yields
an orientation more than once, it is taken as the correct
orientation of the triangle.

The incorrect reading is made if the robot crosses one
of the swap lines supported by pairs of landmarks of the
triangle. The angle between two swap lines corresponds
to an opposite angle of an internal angle of the triangle.
In the worst case, the three internal angles of the tri-
angle are as close to π as possible, which means the
triangle is equilateral with each of the internal angles
being π/3. This means that the control error allowed
corresponds to the supplementary angles of the internal
angles, which allows an error of 2π/3.

With Strategy 2, assume that we find that j ∈ �( k, i)
but, as a result of errors in control, the observed value
of �( k, i) is incorrect. Note that the triangle pipjpk has
the same orientation of a triangle piplpk if and only if
pl is inside the triangle pipjpk . With this, the robot can
compute the orientation of the triangles piplpk , with
pl ∈ �( i, j) ∩�( j, k), and select those pl which yield
the same orientation as pipjpk .

4.2. Boundary of the Convex Hull

Let hull( L) be the convex hull of the set of landmarks.
In this task the robot should determine which land-
marks are on the boundary ∂hull( L) of hull( L). This
task can be solved easily (and efficiently) by finding
which landmarks do not belong to the interior of any
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triangle defined by three landmarks. However, a sig-
nificantly more efficient algorithm can be constructed
based on the well-known Graham scan for the compu-
tation of the convex hull (Graham 1972). In its regular
setting, the Graham scan starts by finding one land-
mark in the convex hull (e.g., the leftmost), and sorting
the remaining landmarks radially around it. Next the
landmarks are considered three by three according to
this radial order. Particular landmarks are included or
removed from the boundary of the convex hull depend-
ing on whether they lie to the left or the right of the
landmarks in the triplet.

In our setting, we need to find first a pair of land-
marks that appear consecutively ∂hull( L).

Strategy 3 (!t). Find a pair of landmarks in ∂hull( L).

Description. The strategy is based on an iteration that
tracks some landmarks sequentially. For clarity of expo-
sition, we make the label of the landmark tracked at step
i to be i.

We need a pairs of landmarks for which the value
of � is zero, and we want to find this pair without com-
puting the entire �. Initially, a pair of landmarks is arbi-
trarily selected, p1 and p2, and the robot tracks p1 until
1 disappears from lcds( x). Set i = 1, and thereafter we
have the following:

1. The motion track( i+1) is executed. During its exe-
cution, �( i, i + 1) and �( i + 1, i) are computed.
If one of them is zero, then terminate, since the
desired pair has been found.

2. Let i + 2 be the label following i + 1 in lcds( x),
immediately before i + 1 disappears from lcds( x).

3. Increment i, and go to step 1.

Theorem 2. Strategy 3 finds a pair of landmarks in
hull( L) with O( n) tracking motion primitives.

Proof. Consider the swap line �pipi+1, and “sweep
it” radially counterclockwise around pi+1. Given that
i + 2 is the label following i + 1 in lcds( x) before i + 1
disappears, it follows that the first landmark found in
the sweep is pi+2. There are three cases:

1. pi+1 ∈ ∂hull( L). This implies that pi+2 ∈ ∂hull( L),
and the desired pair has been found.

2. pi+2 ∈ ∂hull( L). Similar to the previous case,
but the pair is guaranteed to be found in the next
iteration.

3. Otherwise, observe that if p ∈ ∂hull( L) and s( p) ∈
�( i, i+1), then s( p) ∈ �( i+1, i+2). This implies
that the iteration cannot loop forever. To see this,
suppose L′ ⊂ L is a minimal set of landmarks
that cause a loop. Consider the � values for con-
secutive landmarks in ∂hull( L′), and a landmark
p ∈ ∂hull( L). Since p /∈ ∂hull( L′), then, for some i,

s( p) ∈ �( i, i + 1), but s( p) /∈ �( i + 1, i + 2), which
is a contradiction.

Based on Strategy 3, ∂hull( L) is easily computed.

Strategy 4. Find ∂hull( L) of the set of landmarks L.

Description. Perform Strategy 3, and assume that the
pair of landmarks found on ∂hull( L) is ( pi, pj), with
�( j, i) = ∅. Using Strategy 1, the robot can be posi-
tioned somewhere along the line segment joining pi and
pj. At this point, if we assume |L| > 2, the sensor read-
ing has the form lcds( x) = [i, j, k, X ], in which X is a
(perhaps empty) sequence of landmarks. It follows that
�( k, j) = ∅, since pk is the first landmark found after
a radial sweep around pj. This process is repeated, but
now between pj and pk , until pi is found again.

In Strategy 4, the more expensive action in terms of
motion primitives is the execution of Strategy 3. There-
fore, Strategy 4 finds the convex hull of L using O( n)
tracking motion primitives.

5. Patrolling

In this section we model robotic tasks in which a robot
carefully monitors some area of the environment. As a
concrete example, imagine an unmanned flying vehicle
above a terrain. The flying vehicle is given a set of way
points, which are visited sequentially. In this example,
we solve a version of the patrolling problem in which
the robot performs loops around a given subset of the
landmarks. Formally, let W ⊂ L, with W ∩ ∂hull( L) =
∅. The patrolling task for set W is defined as follows:
Find M ⊂ L, such that W ⊂ M, ∂hull( M) ∩W = ∅ and
the size of M is minimal.

To solve this task, the dual of the configuration of
landmarks is introduced. The dual of a landmark pi,
with pi =( px

i , py
i ), is defined as the line p∗

i =( px
i x+py

i y).
There are well-known properties of such dual arrange-
ments (Edelsbrunner 1987; de Berg et al. 1997), such
that the intersection of two lines p∗

i and p∗
j , which

defines a vertex in the dual, corresponds to the line
passing through pi and pj in the primal space. Also,
ordering relations are respected. Namely, if a point p
is above a line m in the primal space, then the point m∗

is above the line p∗ in the dual. Figure 5 shows the dual
arrangement for a configuration of four landmarks.

A line arrangement can be encoded with a sequence
of permutations (Edelsbrunner 1987). This is done by
sweeping a vertical line from left to right in the line
arrangement, recording the vertical order of the inter-
sections of the vertical line with the lines of the arrange-
ment. Such permutations can be obtained from the pri-
mal space. As shown in Figure 5, when the robot travels
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Fig. 5. Retrieving the permutations that encode the configuration of landmarks. In (a) the robot travels outside the convex hull
of a set of landmarks. This is naturally expressed in the dual line arrangement in (b).

outside a convex hull of a set of landmarks, a vertex of
the line arrangement is read whenever two labels swap
places from one permutation to the other. Since a ver-
tex in the dual corresponds to a line in the primal, only
(n

2

) + 1 permutations are needed to describe the line
arrangement, when actually 2

(n
2

)

could be read by the
robot traveling outside the convex hull. These permu-
tations have other nice symmetric properties, and the
reader is referred to Edelsbrunner (1987).

There some minor complications for obtaining such
permutations with the robot model described. First, the
robot cannot, in general, travel outside a convex hull,
since it only knows how to track landmarks. To solve
this, we need the following lemma.

Lemma 3. Let L be a set of landmarks and let Z be a
subsequence of lcds( x) containing only the labels cor-
responding to the landmarks in ∂hull( L) (elements of Z
may not necessarily appear consecutively in lcds( x)).
Then Z is the same circular subsequence for any posi-
tion of the robot inside hull( L).

Proof. For labels i and j to switch places in Z, at some
point they should map to the same position in the land-
mark order detector. This means that pi, pj and the robot
are collinear, and that either pi is contained in the line
segment from the robot position to pj, or pj is con-
tained in the line segment from the robot position to pi.
Since no three landmarks are collinear, the robot must
be outside hull( L).

From Lemma 3, the robot can obtain the counter-
clockwise order of the landmarks on the boundary of
the convex hull. Instead of traveling properly outside
the convex hull, the robot tracks each of the landmarks
in the boundary sequentially, following the order found.
When the robot arrives at a landmark pi ∈ ∂hull( L), the
corresponding permutations as if the robot was trav-
elling outside hull( L) but arbitrarily close to ∂hull( L)
are generated as follows. First note that the only swap

lines crossed when the robot moves arbitrarily close to
pi are the swap lines that start at pi. Therefore, only
swaps involving i occur in lcds( x). Furthermore, the
order in which these swap lines are crossed is deter-
mined by the cyclic order given by lcds( x) when the
robot arrives at pi. Finally, the landmark order detector
gives cyclic permutations, but the arrangement descrip-
tion needs the extremal point in a particular direction to
come first. This is easily solved by ordering the cyclic
permutation such that the label of the landmark being
tracked appears first. The following lemma is a well-
known result for dual line arrangements (as expressed
in our framework).

Lemma 4. Let L∗ be the set of lines dual to the set
of landmarks L. Let mv be a vertical line, and let
[p∗

1, p∗
2, . . . , p∗

n] for p∗
i ∈ L∗ be sorted according to the y-

coordinate of the intersection between mv and p∗
i . Then

the landmarks p1 and pn belong to ∂hull( L).

Proof. Let mv intersect the x-axis at x. Consider all
the lines intersecting the convex hull of L with slope
x. Since the duality transformation is order-preserving,
then p1 is below and pn is above all such lines.

Corollary 5. Let L∗ be the set of lines dual to the
set of landmarks L. Let mv be a vertical line, and let
[p∗

1, p∗
2, . . . , p∗

n−1, p∗
n] for p∗

i ∈ L∗ be sorted according to
the y-coordinate of the intersection between mv and p∗

i .
Let p1, p2, pn−1, and pn be the duals of p∗

1, p∗
2, p∗

n−1, and
p∗

n respectively. Then p2 is in ∂hull( L \ {p1}), and pn−1

is in ∂hull( L \ {pn}).
Proof. Consider L∗ \ {p∗

1} and L∗ \ {p∗
n}, and apply

Lemma 4.

Strategy 5. Given a set W ⊂ L of landmarks to patrol,
find M ∈ L such that W ⊂ M, |M | is minimal, and
∂hull( W ) ∩∂hull( M) = ∅.

 at NORTHWESTERN UNIV LIBRARY on December 9, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


8 The International Journal of Robotics Research 00(000)

Description. Corollary 5 immediately provides a
patrolling strategy as follows. Assume that the robot has
computed the permutations encoding the dual arrange-
ment of L. The strategy is based on the following iter-
ation. Set L0 = L. For u ≥ 0, find p ∈ ∂hull( Lu) such
that ∂hull( Lu \ {p}) does not contain any landmark in
W . If no such landmark exists, set M = Lu. Else, set
Lu+1 = Lu \ {p} and repeat.

By Corollary 5, landmarks can be removed from Lu,
and the boundary of the convex hull can be read directly
from the permutations encoding the dual arrange-
ment. Moreover, those permutations with the landmark
removed encode the dual arrangement of Lu+1. A land-
mark may not be removed if this will make a land-
mark in W become the first, or last, in the permutations
encoding the dual arrangement. The robot can then
patrol the landmarks in W by following the landmarks
on the boundary of M in counterclockwise order.

6. Navigation

The final task described is navigation. Consider the
partition of the plane in which locations inside the
same cell generate the same reading in the landmark
order detector. This can be considered as an aspect
graph (Koenderink and van Doorn 1976), in which a
cyclic permutation is an aspect of the configuration of
landmarks. This partition is uniquely determined by the
swap lines. In this framework, a navigation goal is a
sequence g of landmark labels. Formally, the naviga-
tion task is defined as follows: Move the robot such that
a state x with lcds( x) = g is reached. Report if g cannot
be realized given the configuration of landmarks in the
plane.

6.1. Swap Cell Decomposition

We refer to the decomposition induced in R
2 by all the

swap lines as the swap cell decomposition. The 0-cells
are landmarks, the 1-cells are swap lines, and the 2-
cells, called the swap cells, are connected open regions
of R

2 from which lcds( x) reports the same cyclic per-
mutation. For a set of landmarks L, let KL be the set of
all of the swap cells. Abusing notation, for swap cell
C ∈ KL, let lcd( C) be the reading of the landmark
cyclic order detector from a point in C.

The swap cell decomposition can be naturally
encoded in a graph, which is an aspect graph (Koen-
derink and van Doorn 1976) in which a cyclic permu-
tation is an aspect of the configuration of landmarks.
We will explore this idea in Section 7. For now, in this
section we are interested in moving the robot between
swap cells without the complete knowledge of the swap
cell decomposition. As in Section 5, the robot can easily

learn the order type of a set of landmarks L, by travel-
ing once around the convex hull boundary. Therefore,
in this section, we assume that a complete knowledge
of � is available.

Given that the robot cannot travel outside hull( L), the
navigation task is only defined for cells whose intersec-
tion with hull( L) is not empty. The navigation task is
meaningful if different cells generate different cyclic
permutations for the landmark order detector. To prove
this, the following lemma is proposed.

Lemma 6. Let KL be the set of swap cells of the swap
cell decomposition induced by the landmark set L, and
let Cu, Cv ∈ KL. If Cu �= Cv and they are bounded
by the same swap line �pipj, then they generate different
readings in the landmark order detector.

Proof. Consider a motion of the robot from Cu to Cv in
a straight line arbitrarily close to �pipj. This makes labels
i and j appear consecutive in lcds( x) for the duration of
the motion. Since Cu and Cv are different, there are two
cases: (1) either Cu and Cv are neighboring cells whose
closure intersects at �pipj; or (2) at least another swap
line intersects �pipj between cells Cu and Cv. In the first
case, going from Cu to Cv crosses �pipj, and lcd( Cu) is
the same as lcd( Cv), but with the pair of labels i and j
transposed. For the second case, assume that the inter-
secting swap line is �pkpl. Crossing this line swaps the
order of k and l. This transposition could be reverted
only if �pkpl is crossed, or if one of k or l transposes
with all of the other landmarks labels. The first situ-
ation is not possible, since both swap lines lie on the
same line, and �pipj can only intersect one of them. Fur-
thermore, the other case would imply that i and j are
at some instant not consecutive in lcds( x). This is not
possible by traveling arbitrarily close to �pkpl. Thus, the
readings of lcds( x) from Cu and Cv will differ in at least
a pair of landmarks.

The next theorem states that the landmark order
detector generates different readings for cells intersect-
ing the convex hull of the configuration of landmarks.

Theorem 7. Let K̂L be the set of swap cells of the
swap cell decomposition induced by the landmark set
L whose intersection with hull( L) is not empty. For any
two different cells Cu, Cv ∈ K̂L, the cyclic permutations
generated by lcds( x) when the robot is inside Cu or Cv

are different.

Proof. The proof is by induction on the number of land-
marks n = |L|. When n = 3, there is a single cell
intersecting hull( L). For n > 3, assume that the state-
ment is true for n landmarks. Then, for n+1, adding the
new landmark generates 2n swap lines, some of which
stab cells in C. Cells stabbed by the same swap line will
have different cyclic permutations, by Lemma 6. Since
the new landmark does not change the relative ordering
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Fig. 6. Different swap cell decompositions with the same
order type.

of any of the other landmarks, by the induction assump-
tion, cells that do not share one of the new swap lines
will also have different permutations.

Note that in Theorem 7 the conditions refer only to
K̂L, the set of cells that intersect hull( L). This fact is
used in the base of the induction. For three landmarks,
there is only one cell that intersects hull( L), but there
are three swap cells outside hull( L), all associated with
the same cyclic permutation.

6.2. Is a Cyclic Permutation Realizable?

Given a goal cyclic permutation g, the first issue we
need to settle is whether it is realizable. That is, is there
a swap cell C ∈ K̂L for which lcd( C) = g?. We would
like a result that, given a cyclic permutation g and the
order type �, determines whether g is realizable. For
example, with Lemma 3, we can establish that g can-
not be realizable if the subsequence of landmarks in the
convex hull boundary of L appears in the wrong order
in g. However, in general it is not possible to determine
whether g is realizable solely from the order type.

Lemma 8. Two different sets of landmarks may have
the same order type, but induce different swap cell
decompositions.

Proof. See Figure 6.

Given Lemma 8, we would like to find necessary
conditions for cyclic permutations to be realizable. The
main motivation here is to determine whether the per-
mutation is not realizable by moving the robot as little
as possible. To achieve this, we need to somehow relate
the ordering of a cyclic permutation with the order type.
This is done by finding polar pairs. A pair ( i, j) is called
a polar pair of a cyclic permutation g if i and j appear
consecutively in g, and g can be partitioned into subse-
quences g = [i, j, X , Y ], such that either �( i, j) = X or
�( j, i) = X . The line supported by the landmarks with
labels i and j is called a polar line.

Take two landmarks pi and pj. Suppose that ( i, j) is a
polar pair of some cyclic permutation g. We can think
of the polar line supported by pi and pj as composed

of three line segments: the swap line �pipj, the line seg-
ment with endpoints at pi and pj, and the swap line �pjpi.
We can easily find a relation between g and swap lines
supported by polar lines.

Lemma 9. If a cyclic permutation g is realizable in the
landmark set L at cell C ∈ KL, then the swap lines in
the boundary of C are supported by polar lines.

Proof. With lcd( C) = g, assume �pipj is a swap line in
the boundary of C. Clearly, the labels i and j appear
consecutively in g. Now, separate the rest of the labels
of g into two sets, according to on which side of �pipj

they appear. These two sets correspond to �( i, j) and
�( j, i).

The necessary condition on polar lines of Lemma 9
becomes stronger with the following lemma.

Lemma 10. If a cyclic permutation g is realizable in
the landmark set L at cell C ∈ KL, with |L| > 2, then g
has at least two polar pairs, and every polar line inter-
sects at least another polar line with this intersection
occurring in the swap line sections of both polar lines.

Proof. Observe that, for |L| > 2, every swap cell is
bounded by at least two swap lines, and that every land-
mark is an endpoint of |L| − 1 ≥ 2 swap lines. There-
fore, a swap line cannot appear isolated in the boundary
of a swap cell, as it has to intersect another swap line.
Lemma 9 tells us that the swap lines in the boundary of
a swap cell are supported by polar lines, and the result
follows.

Note that Lemma 10 considers |L| > 2. For L ≤ 2,
determining whether g is realizable is trivial, since there
is only one swap cell. One issue remains for Lemma 10.
We need to determine whether two polar lines intersect
and, if they do, whether the intersection is at the swap
line sections. The next two lemmas are useful.

Lemma 11. For four different landmarks pi, pj, pk, pl ∈
L, the line segment pipj intersects one of the swap lines
�pkpl or �plpk if (1) |�( k, l) ∩{i, j}| = 1, and (2) k ∈

�( i, j) ⇐⇒ l ∈ �( i, j).

Proof. Condition (1) states that pi and pj appear on dif-
ferent sides of the line supporting the swap lines �pkpl

and �plpk . Condition (2) states that both pk and pl appear
on the same side of the line supported by pi and pk . With
these two conditions, the result easily follows.

Lemma 12. For four different landmarks pi, pj, pk,
pl ∈ L, the line segments pipj and pkpl intersect if
|�( i, j) ∩{k, l}| = 1 and |�( k, l) ∩{i, j}| = 1.

Proof. When line segment pkpl intersects pipj, end-
points pk and pl appear on different sides of the line
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Fig. 7. By order type alone, it cannot be determined whether
two swap lines intersect.

supporting line segment pipj. This implies that exactly
one of k or l is in �( i, j) ∩{k, l}, and similarly for i or j
and �( k, l) ∩{i, j}.

Lemmas 11 and 12 fall short of the desired result.
They give conditions for when two polar lines do not
intersect at their swap line sections. In particular, they
cannot determine whether two polar lines are parallel.
As we illustrate in Figure 7, polar lines may be paral-
lel or not, independently of the particular order type.
In Section 8 we propose a general position assump-
tion that makes Lemmas 11 and 12 sufficient to deter-
mine whether two polar lines intersect at their swap line
sections.

Now we are ready to present a navigation strategy.

Strategy 6. Navigation to a cyclic permutation of
landmarks.

Description. Assume that the robot has gathered the
order type information for the set of landmarks L, and
now it is commanded to navigate to a swap cell in which
a cyclic permutation of landmark labels g appears on
the sensor. The first step is to compute the polar pairs of
g, and determine which polar lines may intersect at their
swap line sections (Lemmas 11 and 12). Now the robot
needs to visit each of the intersections, until g appears
on its sensor. If there are no intersections on which g
appears on the sensor, then, according to Lemma 10, g
is not realizable.

We need to determine how the robot may move to
an intersection point of two polar lines. Assume ( i, j)
and ( k, l) are two different polar pairs which may inter-
sect, and assume, for the time being, that neither pk

or pl belong to ∂hull( L). The main insight here is to
note that every swap line that belongs to a boundary
of a swap cell that intersects hull( L) also intersects
∂hull( L). From Strategy 5, we know which landmarks
belong to ∂hull( L), together with their counterclock-
wise cyclic order. Using Lemma 12, we can find the line
segments of ∂hull( L) that intersect �pipj and �pjpi. Such
segments are easily transversed by tracking the respec-
tive landmarks in ∂hull( L) until i and j swap places in
the sensor. At this point, the robot tracks pi (or pj, it
does not matter), until k and l swap or the robot reaches
pi. This guarantees that one of the swap lines of the
polar pair ( i, j) is transversed. If the robot reaches pi, the

other swap line of ( i, j) should be transversed in a simi-
lar manner, until k and l swap, or the tracked landmark
is reached.

If one of pk or pl belong to ∂hull( L), then the unique
swap line that intersects hull( L) may be transversed fol-
lowing the previous procedure. If both pk and pl belong
to ∂hull( L), then a valid intersection for Lemma 10 may
occur only at pk or pl, which the robot may easily
track.

7. The Swap Graph

In the previous section we introduced the swap cell
decomposition, for a set of landmarks L. In this sec-
tion we introduce the swap graph GL =( VL, EL), which
is simply the dual graph of the swap cell decompo-
sition. A vertex in VL represents a swap cell, and an
edge ( Cu, Cv) ∈ EL indicates that swap cells Cu and Cv

are neighbors, separated by exactly one swap line (see
Figure 8).

As we saw in the previous section, the order type
sometimes provides incomplete information about KL.
In this section, we study the construction of the swap
graph for a set of landmarks, focusing on the cells
of KL that intersect hull( L). This construction is more
complex than that for the order type, but it provides
all the combinatorial information about KL. Further-
more, we do not need to develop new tools to con-
struct the swap graph, as we can reuse the techniques
developed for Lemmas 7 and 11, and Strategies 5
and 6.

Strategy 7. Swap Graph construction inside hull( L).

Description: From Strategy 5 we learned ∂hull( L), and
from Strategy 6, we know how to transverse the por-
tion of all the swap lines that intersect hull( L). To con-
struct the swap graph GL for a set of landmarks L, the
robot simply tracks each of the swap lines. Lemma 7
ensures that there is a bijection between sensor read-
ings and swap cells, so that vertices and edges of the
graph are created in the natural manner: every unique
sensor reading corresponds to a vertex, and there is an
edge between two vertices if and only if there is a swap
line separating the two readings.

We can view the swap cell decomposition as a
line arrangement with some of the “middle segments”
removed. Therefore, all of the complexity results of for
arrangements of m half lines hold for the swap cell
decomposition, such as number of swap cells, O( m2),
the number of edges, O( m2), or the complexity of the
boundary of a swap cell, O( m) (Boissonnat et al. 1998).
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Fig. 8. A set of landmarks and its swap graph.

8. Extensions

8.1. Guaranteed Intersection of Swap Lines

In Section 6, we presented Lemmas 11 and 12 as a
mean to determine whether two polar lines did inter-
sect at their swap lines sections. As we explained, these
lemmas fall short of this goal, since we could not deter-
mine whether two polar lines were parallel. One alter-
native is to ban parallel lines from existence. This is
certainly not very intellectually satisfying, but can be
easily done with a standard general position assump-
tion, in which no two lines supported by four different
landmarks are parallel. This general position assump-
tion is justified by the fact that, given a finite set of
lines in the plane, choosing one point at random in the
plane to be collinear with one of the lines has probabil-
ity zero.

8.2. Outside the Convex Hull

Until now, we assumed that the robot could only move
tracking landmarks. This restricts the robot to move-
ment inside the convex hull of the set of landmarks.
We can extend the robot model with a second motion
primitive, called repel. Unlike track, a repel command
is only applicable when the robot is arbitrarily close
to a swap line. The motion primitive repel( i, j) moves
away from the landmarks pi, pj ∈ L, along the swap
line �pipj.

The first complication we encounter with repel is
the termination of the motion primitive. If the set of
landmarks satisfies the general position assumption of
Section 8.1, then from � we can determine which of
the swap lines intersect with a particular swap line �pipj.
Thus, repel( i, j) terminates once a particular swap line
intersection is found. A second alternative is to mod-
ify the landmarks model more aggressively. We could
assume that all the landmarks are contained inside a
convex, compact, path-connected subset of the plane,
and provide the robot with a contact sensor that indi-
cates whether the robot is in contact with the boundary
of the environment.

In Theorem 7 we proved that two swap cells inside
the convex hull of L generate different cyclic permuta-
tions. Unfortunately, this is not true in general for all
swap cells in the decomposition.

Theorem 13. If Cu and Cv are two different swap cells
that do not intersect hull( L), then lcd( Cu) and lcd( Cv)
are not guaranteed to be different cyclic permutations,
independently of the size of L.

Proof. Refer to the construction on Figure 9.

However, the following theorem extends the unique-
ness of sensor readings inside the hull( L).

Theorem 14. If Cu is a cell that intersects hull( L), then
lcd( Cu) = lcd( Cv) implies Cu = Cv.

Proof. Assume that Cu intersects hull( L), and that
lcd( Cu) = lcd( Cv), but Cu �= Cv. If the cell Cv does not
intersect hull( L), we have a contradiction by Lemma 3
(the cyclic order of the landmarks in ∂hull( L) is dif-
ferent, and lcd( Cu) �= lcd( Cv)). Otherwise, if Cv inter-
sects hull( L), by Theorem 7 we also have a contra-
diction, since cells intersecting hull( L) have unique
readings.

Strategy 8. Swap graph construction.

Description: Using Strategy 7, the robot constructs the
swap graph for hull( L). To learn the swap graph out-
side hull( L), the robot performs a repel motion prim-
itive on the portion outside the convex hull of every

 at NORTHWESTERN UNIV LIBRARY on December 9, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


12 The International Journal of Robotics Research 00(000)

Fig. 9. Construction of a set of landmarks, such that two swap
cells are associated with the same cyclic permutation. First,
two points x1 and x2 outside hull( L) are chosen. Second, the
cyclic permutation [1, 2, 3, 4, 5, . . . , n] is represented on two
segments in the form of two equivalent permutations. Third,
each landmark pi is found as the intersection of two corre-
spondent rays emanating from x1 and x2 and passing through
the points labeled i. Suitable label arrangements on the two
segments allow the retrieval a deployment for which x1 and
x2 belong to different swap cells.

swap line. Every time the cyclic permutation changes,
a vertex C is added to the swap graph, together with
the corresponding edges found through the swap lines’
crossings. In addition, the robot records the swap lines
known to bound the associated swap cell for every ver-
tex. Following Lemma 6, two vertices in the graph are
merged into one vertex if they are associated with the
same cyclic permutation, and share at least one swap
line.

In the previous section we described a goal-based
navigation algorithm without assuming a priori knowl-
edge of the environment. Now, given a swap graph rep-
resentation of the environment, we can easily drive the
robot from one cell to another. A swap cell is identified
by a vertex of G and its incident edges (two distinct ver-
tices can share the same cyclic permutation but cannot
have the same incident edges). Given a vertex C ∈ G,
the corresponding swap cell can be reached with a repel

motion along one of the swap lines labeling an edge
incident in C.

9. Conclusions and Open Questions

In this paper we established the capabilities of a robot
which is only able to detect the cyclic angular order of
landmarks (distinguishable points in the plane) around
it. The combinatorial properties of the set of land-
marks were studied and established in terms of its order
type. We computed the convex hull of the set of land-
marks, and solved the tasks of patrolling and naviga-
tion uniquely in terms of cyclic permutations of land-
marks. We did not use any coordinates to express these
tasks, which made it unnecessary to model errors in the
positions of the robot and the landmarks, and which
made any precise measurements of angles and distances
traveled unnecessary.

Given the information provided by the permutations,
one may wonder if it is possible to recover the coordi-
nates of an equivalent set of landmarks. That is, is it
possible to construct the coordinates of a set of land-
marks such that this construction has the same order
type as the original set? This turns out to be a very
hard question. Simply deciding if a sequence of permu-
tations can be realized in the plane is NP-hard (Shor
1991). Moreover, representing such coordinates may
require an exponential number of bits (Goodman et al.
1989). Our problem may be simpler, since the robot
proves that the permutations are realizable by sensing
them. If not for the general case, realizations can be
easily found for small subsets of landmarks.

This work has made two strong sensing assump-
tions: infinite range in the landmark order detector, and
a perfect identification of landmarks. To remove the
first assumption we note that the concepts presented
still hold for local neighborhoods of landmarks. One
of our preliminary ideas is to apply directly the algo-
rithms presented in Ghrist et al. (2006), in the context
of sensor networks. Determining the relations between
neighborhoods of landmarks also allows the introduc-
tion of environment obstacles. For the second assump-
tion, given that the functions � and λ provide equiva-
lent information, it is plausible to allow some recogni-
tion error of landmarks. This idea is as follows. If the
landmark order detector is not able to identify a land-
mark, but it is able to detect that a landmark is indeed
present, this recognition error may be corrected using
the λ function. For example, the robot may be able to
detect landmarks much farther than the maximum dis-
tance for a perfect identification. The λ function seems
to be the appropriate tool for such situations.

Finally, we mention that there is a natural descrip-
tion for the information space of n landmarks with the
braid group Bn on n strands. Each strand represents a
unique landmark, and a crossing between two strands
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Fig. 10. Encoding the sensor history with braids. There is a
natural description of the information space of n landmarks
with the braid group on n strands, Bn. Each strand represents a
landmark, and each crossing represents a change in the circu-
lar order. In the figure, the robot follows a path that surrounds
landmark 1. The changes in the circular order are encoded
with the braids on the right.

represents a swap in the cyclic order of the landmarks.
The strand corresponding to the landmark closer to the
robot is defined to cross over the other strand. See
Figure 10 for an example. Given that we are dealing
with circular permutations, this suggests the robot paths
that are loops. We are hopeful that this description will
raise other interesting questions.
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Notes

1. This is done for the sake of clarity, since track( s( p) ) may
be designed to stop just before p is reached. However, this
would not change the essence of further developments,
and may clutter some descriptions.

2. Pappus’s hexagon theorem specifies the structure of nine
lines and nine points, with each line incident to three
points, and each point incident to three lines.
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