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Introduction

Distribution over functions

@ in supervised learning, we observe some input vector x; and some scalar outputs y;

@ we assume that y; = 7(x;), for some unknown function f, possibly corrupted by
noise ¢

@ the optimal approach is to infer a distribution over functions given the data,
p(f|X,y), and then to use this to make predictions given new inputs, i.e., to
compute

p(y* X", X, y) = / ply", FIx", X, y)df = / p(y"IF, X7 )p(FIX, y)df

@ question: how can we characterize a distribution over functions p(f)?

@ in order to answer, we first need to introduce the concept of stochastic process
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Introduction

Stochastic Process

@ a stochastic process is a statistical model where each observation correspond to
a function

more formally
@ let 7 be a subset of [0, c0)
@ a family of random variables {X;}:e7, indexed by T, is called a stochastic process
@ when T =N, {X;}:c7 is said to be a discrete-time process

@ when 7 = [0,00), it is called a continuous-time process

note that

@ when T is a singleton (say 7 = {1}), the process {X:}+c7 = X is really just a
single random variable

@ when 7T is finite (e.g., 7 = {1,2,...,n}), we get a random vector
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Introduction

Stochastic Process

@ every stochastic process can be viewed as a function of two variables t and w € Q
@ for each fixed (t,w) — X:(w) is a random variable

@ if we change our point of view and keep w fixed, the stochastic process is a
function mapping w to the real-valued function t — X:(w) (these functions are
called the trajectories of the stochastic process X)

Wiener pracess

——— sample path 1
———— sample path 2
————— sample path 3
———— expeoted value

T
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time
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Introduction

Stochastic Process

how can we study/characterize a stochastic process {X:}te7?
@ we can start by fixing t = t; and characterizing the PDF px, (x1) of the RV X;

@ then we can consider two values ti, t; € 7 and characterize the joint PDF
Pxq.%, (X1, x2) of the RVs X; and Xz

@ in general we can consider any arbitrary finite set of values ti, ..., t, and its
corresponding joint PDF px, ... x, (X1, ..., Xn)

R
O

sample path 1
sample path 2
sample path 3
expected value

Wiener process

:4““
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Introduction

Gaussian processes

in a Gaussian process representing an unknown function f

@ every point y; = f(x;) is associated with a normally distributed random variable,

f(xi) ~ N(p(xi), o(xi))

@ every finite collection of random variables f(x1), ..., f(x») has a multivariate normal
distribution

i.e.

p(f(x1), ..., F(xn)) ~ N(X|p(X1, ..., Xn), B(X1, ..., Xn))

the covariance X(xu, ..., X,) has elements X;; = k(x/, x;) where £ is a positive
definite kernel function
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Introduction

An Example

mean
sempe 0
sampe |
sampie 2

seee

different observations (trajectories) of a Gaussian process with
@ mean function u (black)
@ u =+ 20 functions (95% confidence)
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Introduction

Why Gaussian Processes?

why should we use a Gaussian processes?
@ GP based methods can be thought of as a Bayesian alternative to the presented
kernel methods (including SVM)

@ although those kernel methods are sparser and therefore faster, they do not give
well-calibrated probabilistic outputs (i.e. estimates plus confidences)
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@ a GP defines a prior over functions, which can be converted into a posterior over
functions once we have seen some data D = {x;, yi}!;

@ the GP prior on the regression function is denoted by
f(x) ~ GP(m(x), x(x,x"))

where m(x) € R is the mean function and x(x,x’) € R is the kernel or covariance
function

m(x) = E[f(x)]
k(x,x') = E[(f(x) = m(x))(f(x) — m(x))"]
N.B.: k(x,x’) is required to be a positive definite kernel
@ for any finite set of points, the process defines a joint Gaussian
p(f, X) = N(F|u,K)
where f 2 [f(x1), ..., f(xn)]” € RY, Kj = k(xi, %)), o = [m(x1), ..., m(xn)]" € R”,

@ note that it is common to use a mean function of m(x) = 0, since the GP is
flexible enough to model the mean arbitrarily well

@ it is also possible to consider parametric models for the mean function
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Predictions Using Noisy-free Observatio

@ suppose we observe a training set D = {(x;, f;),i = 1: N}, where f; = f(x;) is the
noise-free observation of the function evaluated at x;

@ given a test set X, of size N, x D, we want to predict the function outputs f.

what do we expect?
@ we have assumed the observations are noiseless

@ if we ask the GP to predict f(x) for a value of x that it has already seen, we want
the GP to return the answer f(x) with no uncertainty

@ in other words, it should act as an interpolator of the training data
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Predictions Using Noisy-free Observations

@ by definition of the GP, the joint distribution has the following form

HEN(ARNE)

= pu(X), pe = p(Xs),
K = x(X,X) € RVN | K, = k(X,X.) € RV M Ko, = k(X Xy) € RV=¥N=

Luigi Freda ("La Sapienza” University) Lecture 10 December 20, 2016 17 / 37



Marginals and Conditionals

(Marginals and conditionals for an MVN)
Suppose x = (x1,%2) ~ N (x|, 2), i.e. x is jointly Gaussian with parameters

5 Y X -1 A Ap
= 3= A==

[ } ’ [221 222} ’ |:A21 Ao
then the marginals are given by
p(x1) = N (x1|p1, E11)
p(x2) = N (x2|p2, 322)

and the posterior conditional is given by

p(xi[x2) = N (x1|p1)2, B1p2)
Hi2 = p1 + 2122;21(X2 — p2)
= p1 — A Ana(x2 — p2)
Sip =2 - B2 T = AL
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Predictions Using Noisy-free Observations

@ by definition of the GP, the joint distribution has the following form

(e <))

@ by the standard rules for conditioning Gaussians (see lec. 5), the posterior has the
following form

p(f*|x*7xa f) = N(f*‘ﬂ*, 2)*)
3. = Ky — KTK7IK,
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Predictions Using Noisy-free Observations

left: some functions sampled from a GP prior with SE (Squared Exponential) kernel
@ right: some samples from a GP posterior, after conditioning on 5 noise-free
observations
@ the shaded area represents E[f(x)] £ 2std(f(x))
@ the model perfectly interpolates the training data
@ the predictive uncertainty increases as we move further away from the observed

data
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Squared Exponential Kernel

@ in the previous 1D example, we used the squared exponential kernel
K(x,X')=cfexp [ — i(x —x')?
2/?

@ / controls the horizontal length scale over which the function varies

@ o7 controls the vertical scale (variation) of the function
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Predictions Using Noisy Observations

@ now let's consider the case where what we observe is a noisy version of the
underlying function, i.e.
y="Ff(x)+e

where € ~ N(0,07)

@ in this case, the model is not required to interpolate the data (since they are
noisy), but it must come "close” to the observed data

@ one has that y|x ~ N(m(x), 07) since E[y|x] = E[f(x) + €] = E[f(x)] = m(x)

@ the covariance of the observed noisy responses is
covlyp, yq] = cov[f(xp) + €p, f(xq) + €4
which, given the noise terms ¢; are iid, entails
cov[yp, Yal = K(Xp, Xq) + U,\2/5pq

where 6, 2 I(p = q)
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Predictions Using Noisy Observations

@ we havey = f + € where y 2 [y1,...,yn] € RY, f 2 [f(x1),..., f(xn)]” € RV,
€2 er,...,en] € RN

@ this is a Gaussian linear system (see lec. 5) with p(f|X) = NV (f|u, K) and
p(yIf) = TT; N (vilfi, o7)
@ considering that E[y|x] = m(x) and cov[yp, yq] = K(Xp, Xq) + 020pq We obtain

p(y|X) = N(ylu, K,) with K, 2 cov[y|X] = K + afIN
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Predictions Using Noisy Observations

@ for notational simplicity let's assume that the mean function is zero, i.e. m(x) =0

@ the joint density of the observed data y and the latent noise-free function on the

test points f. is given by
K, K.
ARSI

@ again, by the standard rules for conditioning Gaussians, we have that the posterior
predictive density is

p(f*|x*7xvy) = N(f*‘uME*)
pe = KIK y
5, =Ko — KK, 'K,
@ in the case of a single test input x., this simplifies as follows
p(felxe, X, y) = N(f: k] K My, kow — kDK 'ks)

where k. = [£(Xx,X1), v, 6(%e, Xn)] " and ki = K (X, Xx)
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Predictions Using Noisy Observations

@ in the case of a single test input x.
Ti—1 Ti—1
p(f %, X, y) = N(fi ke KTy, kuw — ki K k)

where ki = [£(Xs,X1), or) 6(Xe, Xn)] T and ki = K(Xs, Xx)
@ another way to write the posterior mean is as follows

N
fo=klK ly= ZO&,‘K(X*,X;)

i=1

where a0 = Ky_ly
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Effect of Kernel Parameters

@ the predictive performance of GPs depends exclusively on the suitability of the
chosen kernel

@ suppose we choose the following squared-exponential (SE) kernel for the 1D noisy
observations

1
Ky (Xp, Xq) = 0F exp ( - ﬁ(xp - Xq)2) + U§5Pq

where | is the horizontal scale over which the function changes, 6% controls the

vertical scale of the function, and 05 is the noise variance
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Effect of Kernel Parameters

effects of changing the parameters (/,o¢, 0y)

3 . - . . . . . 3

2 2 2

@ we sampled 20 noisy data points from the SE kernel using (/,0¢,0,) = (1,1,0.1)
and then made predictions changing the parameters, conditional on the data

@ left: (I,0¢,0,) =(1,1,0.1), and the result is a good fit

@ center. (I,0¢,0,) = (0.3,1.08,0.00005) (small /, small noise); now the function

looks more “wiggly”; the uncertainty goes up faster when moving far from the
training points

@ right: (I,0¢,0,) = (3,1.16,0.89) (large /, large noise); now the function looks
smoother
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Estimating the Kernel Parameters

@ to estimate the kernel parameters, we could use exhaustive search over a discrete
grid of values, with validation loss as an objective, but this can be quite slow (this
is the approach used to tune kernels used by SVMs)

@ here we consider an empirical Bayes approach, which will allow us to use
continuous optimization methods, which are much faster

@ in particular, we will maximize the marginal likelihood
p(y1X) = [ ply. (X)df = [ plylf, X)p(FX)af

where f 2 [f(x1), ..., f(xn)]” €RY, y 2 [y1, .., yn] ERY, € £ [e1,...,en] € RV

@ we already saw that y = f + € is a Gaussian linear system with p(f|X) = N(f|0, K)
and p(y|f) = [T, N(yi|fi, %), and we obtain

p(y|X) = N(f|0,K,)

where K, = K + a7l
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Estimating the Kernel Parameters

@ hence we have to maximize the log-marginal likelihood
N
log p(y|X) = log N'(f|0, K, ) = 2yTKy y— |og [Ky| — 5 log(2n)

@ let O denote the vector of kernel parameters

@ once we compute the grad|ent 5 log p(y|X) we can we can estimate the kernel
parameters using any standard gradlent based optimizer on the log marginal
likelihood

@ since the objective is not convex, local minima can be a problem
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Estimating the Kernel Parameters

3
>

+

+
+

&= R :
- 1 > 1

< s +
£ g

noise standard deviation

On

’ 10" -5 0 5 -5 -0 5
characteristic lengthscale input, x input, x

@ b) ©

@ (a) log marginal likelihood vs 05 and /, for fixed 02 = 1, using the 7 data points;
the data was generated using (/,02) = (1,0.1)

@ (b) the function corresponding to the lower left local minimum, (/, 0}2,) ~ (1,0.2);
this is quite “wiggly” and has low noise

@ (c) the function corresponding to the top right local minimum, (/,07}) ~ (10, 0.8);
this is quite smooth and has high noise
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as Linear Smoothers

@ a linear smoother is a regression function which is a linear function of the training
outputs

Flx) =D wilx)y;

i

where w;(x.) is the i-th weight function *

@ GP regression is a linear smoother (there are a variety of linear smoothers, such as
kernel regression, locally weighted regression, smoothing splines, etc)

@ to see that GP regression is a linear smoother, note that the mean of the posterior
predictive distribution of a GP is

Fx) =kIKly =kI(K+ o)y = > wi(x)ys

i=1

with w;(x.) = [(K + o, 1) k.];

Ldo not confuse this model with the linear model f(x.) = w’x
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as Linear Smoothers

@ GP regression as a linear smoother

N
f(x) = Z w; (X )yi
with w;(x.) = [(K + o, 1) k]

@ for certain GP kernel functions, one can show that 3" wi(x.) = 1, although we
may have w;(x.) < 0, so we are computing a linear combination but not a convex
combination of the y;

@ more interestingly, w;(x.) is a local function, even if the original kernel used by
the GP is not local

@ furthermore the effective bandwidth of the equivalent kernel of a GP automatically
decreases as the sample size N increases
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@ Kevin Murphy's book
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