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Introduction
Distribution over functions

in supervised learning, we observe some input vector xi and some scalar outputs yi

we assume that yi = f (xi ), for some unknown function f , possibly corrupted by
noise ε

the optimal approach is to infer a distribution over functions given the data,
p(f |X, y), and then to use this to make predictions given new inputs, i.e., to
compute

p(y∗|x∗,X, y) =

∫
p(y∗, f |x∗,X, y)df =

∫
p(y∗|f , x∗)p(f |X, y)df

question: how can we characterize a distribution over functions p(f )?

in order to answer, we first need to introduce the concept of stochastic process
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Introduction
Stochastic Process

a stochastic process is a statistical model where each observation correspond to
a function

more formally

let T be a subset of [0,∞)

a family of random variables {Xt}t∈T , indexed by T , is called a stochastic process

when T = N, {Xt}t∈T is said to be a discrete-time process

when T = [0,∞), it is called a continuous-time process

note that

when T is a singleton (say T = {1}), the process {Xt}t∈T ≡ X1 is really just a
single random variable

when T is finite (e.g., T = {1, 2, ..., n}), we get a random vector

Luigi Freda (”La Sapienza” University) Lecture 10 December 20, 2016 6 / 37



Introduction
Stochastic Process

every stochastic process can be viewed as a function of two variables t and ω ∈ Ω

for each fixed (t, ω)→ Xt(ω) is a random variable

if we change our point of view and keep ω fixed, the stochastic process is a
function mapping ω to the real-valued function t → Xt(ω) (these functions are
called the trajectories of the stochastic process X )
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Introduction
Stochastic Process

how can we study/characterize a stochastic process {Xt}t∈T ?

we can start by fixing t = t1 and characterizing the PDF pX1(x1) of the RV X1

then we can consider two values t1, t2 ∈ T and characterize the joint PDF
pX1,X2(x1, x2) of the RVs X1 and X2

in general we can consider any arbitrary finite set of values t1, ..., tn and its
corresponding joint PDF pX1,...,Xn (x1, ..., xn)
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Introduction
Gaussian processes

in a Gaussian process representing an unknown function f

every point yi = f (xi ) is associated with a normally distributed random variable,
i.e.

f (xi ) ∼ N (µ(xi ), σ(xi ))

every finite collection of random variables f (x1), ..., f (xn) has a multivariate normal
distribution

p(f (x1), ..., f (xn)) ∼ N (x|µ(x1, ..., xn),Σ(x1, ..., xn))

the covariance Σ(x1, ..., xn) has elements Σij = κ(xi , xj) where κ is a positive
definite kernel function
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Introduction
An Example

different observations (trajectories) of a Gaussian process with

mean function µ (black)

µ± 2σ functions (95% confidence)
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Introduction
Why Gaussian Processes?

why should we use a Gaussian processes?

GP based methods can be thought of as a Bayesian alternative to the presented
kernel methods (including SVM)

although those kernel methods are sparser and therefore faster, they do not give
well-calibrated probabilistic outputs (i.e. estimates plus confidences)
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GP Prior

a GP defines a prior over functions, which can be converted into a posterior over
functions once we have seen some data D = {xi , yi}Ni=1

the GP prior on the regression function is denoted by

f (x) ∼ GP(m(x), κ(x, x′))

where m(x) ∈ R is the mean function and κ(x, x′) ∈ R is the kernel or covariance
function

m(x) = E[f (x)]

κ(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))T ]

N.B.: κ(x, x′) is required to be a positive definite kernel

for any finite set of points, the process defines a joint Gaussian

p(f,X) = N (f|µ,K)

where f , [f (x1), ..., f (xN)]T ∈ RN , Kij = κ(xi , xj), µ = [m(x1), ...,m(xN)]T ∈ RN ,

note that it is common to use a mean function of m(x) = 0, since the GP is
flexible enough to model the mean arbitrarily well

it is also possible to consider parametric models for the mean function
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Predictions Using Noisy-free Observations

suppose we observe a training set D = {(xi , fi ), i = 1 : N}, where fi = f (xi ) is the
noise-free observation of the function evaluated at xi

given a test set X∗ of size N∗ × D, we want to predict the function outputs f∗

what do we expect?

we have assumed the observations are noiseless

if we ask the GP to predict f (x) for a value of x that it has already seen, we want
the GP to return the answer f (x) with no uncertainty

in other words, it should act as an interpolator of the training data
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Predictions Using Noisy-free Observations

by definition of the GP, the joint distribution has the following form[
f
f∗

]
∼ N

([
µ
µ∗

]
,

[
K K∗

KT
∗ K∗∗

])
µ = µ(X), µ∗ = µ(X∗),

K = κ(X,X) ∈ RN×N , K∗ = κ(X,X∗) ∈ RN×N∗ , K∗∗ = κ(X∗,X∗) ∈ RN∗×N∗
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Marginals and Conditionals

Theorem 1

(Marginals and conditionals for an MVN)
Suppose x = (x1, x2) ∼ N (x|µ,Σ), i.e. x is jointly Gaussian with parameters

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
then the marginals are given by

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)

and the posterior conditional is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

= µ1 −Λ−1
11 Λ12(x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11

Luigi Freda (”La Sapienza” University) Lecture 10 December 20, 2016 18 / 37



Predictions Using Noisy-free Observations

by definition of the GP, the joint distribution has the following form[
f
f∗

]
∼ N

([
µ
µ∗

]
,

[
K K∗

KT
∗ K∗∗

])
by the standard rules for conditioning Gaussians (see lec. 5), the posterior has the
following form

p(f∗|X∗,X, f) = N (f∗|µ∗,Σ∗)

µ∗ = µ(X∗) + KT
∗K−1(f − µ(X))

Σ∗ = K∗∗ −KT
∗K−1K∗
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Predictions Using Noisy-free Observations

left: some functions sampled from a GP prior with SE (Squared Exponential) kernel

right: some samples from a GP posterior, after conditioning on 5 noise-free
observations

the shaded area represents E[f (x)]± 2std(f (x))

the model perfectly interpolates the training data

the predictive uncertainty increases as we move further away from the observed
data
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Squared Exponential Kernel

in the previous 1D example, we used the squared exponential kernel

κ(x , x ′) = σ2
f exp

(
− 1

2l2
(x − x ′)2

)
l controls the horizontal length scale over which the function varies

σ2
f controls the vertical scale (variation) of the function
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Predictions Using Noisy Observations

now let’s consider the case where what we observe is a noisy version of the
underlying function, i.e.

y = f (x) + ε

where ε ∼ N (0, σ2
y )

in this case, the model is not required to interpolate the data (since they are
noisy), but it must come ”close” to the observed data

one has that y |x ∼ N (m(x), σ2
y ) since E[y |x] = E [f (x) + ε] = E [f (x)] = m(x)

the covariance of the observed noisy responses is

cov[yp, yq] = cov[f (xp) + εp, f (xq) + εq]

which, given the noise terms εi are iid, entails

cov[yp, yq] = κ(xp, xq) + σ2
yδpq

where δpq , I(p = q)
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Predictions Using Noisy Observations

we have y = f + ε where y , [y1, ..., yN ] ∈ RN , f , [f (x1), ..., f (xN)]T ∈ RN ,
ε , [ε1, ..., εN ] ∈ RN

this is a Gaussian linear system (see lec. 5) with p(f|X) = N (f|µ,K) and
p(y|f) =

∏
i N (yi |fi , σ2

y )

considering that E[y |x] = m(x) and cov[yp, yq] = κ(xp, xq) + σ2
yδpq we obtain

p(y|X) = N (y|µ,Ky ) with Ky , cov[y|X] = K + σ2
y IN
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Predictions Using Noisy Observations

for notational simplicity let’s assume that the mean function is zero, i.e. m(x) = 0

the joint density of the observed data y and the latent noise-free function on the
test points f∗ is given by [

y
f∗

]
∼ N

(
0,

[
Ky K∗
KT
∗ K∗∗

])
again, by the standard rules for conditioning Gaussians, we have that the posterior
predictive density is

p(f∗|X∗,X, y) = N (f∗|µ∗,Σ∗)

µ∗ = KT
∗K−1

y y

Σ∗ = K∗∗ −KT
∗K−1

y K∗

in the case of a single test input x∗, this simplifies as follows

p(f∗|x∗,X, y) = N (f∗|kT
∗K−1

y y, k∗∗ − kT
∗K−1

y k∗)

where k∗ = [κ(x∗, x1), ..., κ(x∗, xN)]T and k∗∗ = κ(x∗, x∗)
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Predictions Using Noisy Observations

in the case of a single test input x∗

p(f∗|x∗,X, y) = N (f∗|kT
∗K−1

y y, k∗∗ − kT
∗K−1

y k∗)

where k∗ = [κ(x∗, x1), ..., κ(x∗, xN)]T and k∗∗ = κ(x∗, x∗)

another way to write the posterior mean is as follows

f ∗ = kT
∗K−1

y y =
N∑
i=1

αiκ(x∗, xi )

where α = K−1
y y
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Effect of Kernel Parameters

the predictive performance of GPs depends exclusively on the suitability of the
chosen kernel

suppose we choose the following squared-exponential (SE) kernel for the 1D noisy
observations

κy (xp, xq) = σ2
f exp

(
− 1

2l2
(xp − xq)2

)
+ σ2

yδpq

where l is the horizontal scale over which the function changes, σ2
f controls the

vertical scale of the function, and σ2
y is the noise variance
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Effect of Kernel Parameters

effects of changing the parameters (l , σf , σy )

we sampled 20 noisy data points from the SE kernel using (l , σf , σy ) = (1, 1, 0.1)
and then made predictions changing the parameters, conditional on the data

left: (l , σf , σy ) = (1, 1, 0.1), and the result is a good fit

center: (l , σf , σy ) = (0.3, 1.08, 0.00005) (small l , small noise); now the function
looks more “wiggly”; the uncertainty goes up faster when moving far from the
training points

right: (l , σf , σy ) = (3, 1.16, 0.89) (large l , large noise); now the function looks
smoother
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Estimating the Kernel Parameters

to estimate the kernel parameters, we could use exhaustive search over a discrete
grid of values, with validation loss as an objective, but this can be quite slow (this
is the approach used to tune kernels used by SVMs)

here we consider an empirical Bayes approach, which will allow us to use
continuous optimization methods, which are much faster

in particular, we will maximize the marginal likelihood

p(y|X) =

∫
p(y, f|X)df =

∫
p(y|f,X)p(f|X)df

where f , [f (x1), ..., f (xN)]T ∈ RN , y , [y1, ..., yN ] ∈ RN , ε , [ε1, ..., εN ] ∈ RN

we already saw that y = f + ε is a Gaussian linear system with p(f|X) = N (f|0,K)
and p(y|f) =

∏
i N (yi |fi , σ2

y ), and we obtain

p(y|X) = N (f|0,Ky )

where Ky = K + σ2
y IN

Luigi Freda (”La Sapienza” University) Lecture 10 December 20, 2016 31 / 37



Estimating the Kernel Parameters

hence we have to maximize the log-marginal likelihood

log p(y|X) = logN (f|0,Ky ) = −1

2
yTK−1

y y − 1

2
log |Ky | −

N

2
log(2π)

let θ denote the vector of kernel parameters

once we compute the gradient ∂
∂θ

log p(y|X) we can we can estimate the kernel
parameters using any standard gradient-based optimizer on the log marginal
likelihood

since the objective is not convex, local minima can be a problem
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Estimating the Kernel Parameters

(a) log marginal likelihood vs σ2
y and l , for fixed σ2

f = 1, using the 7 data points;
the data was generated using (l , σ2

y ) = (1, 0.1)

(b) the function corresponding to the lower left local minimum, (l , σ2
y ) ≈ (1, 0.2);

this is quite “wiggly” and has low noise

(c) the function corresponding to the top right local minimum, (l , σ2
y ) ≈ (10, 0.8);

this is quite smooth and has high noise
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GP as Linear Smoothers

a linear smoother is a regression function which is a linear function of the training
outputs

f̂ (x∗) =
∑
i

wi (x∗)yi

where wi (x∗) is the i-th weight function 1

GP regression is a linear smoother (there are a variety of linear smoothers, such as
kernel regression, locally weighted regression, smoothing splines, etc)

to see that GP regression is a linear smoother, note that the mean of the posterior
predictive distribution of a GP is

f (x∗) = kT
∗K−1

y y = kT
∗ (K + σy I)−1y =

N∑
i=1

wi (x∗)yi

with wi (x∗) = [(K + σy I)−1k∗]i

1do not confuse this model with the linear model f̂ (x∗) = wTx
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GP as Linear Smoothers

GP regression as a linear smoother

f (x∗) =
N∑
i=1

wi (x∗)yi

with wi (x∗) = [(K + σy I)−1k∗]i

for certain GP kernel functions, one can show that
∑N

i=1 wi (x∗) = 1, although we
may have wi (x∗) < 0, so we are computing a linear combination but not a convex
combination of the yi

more interestingly, wi (x∗) is a local function, even if the original kernel used by
the GP is not local

furthermore the effective bandwidth of the equivalent kernel of a GP automatically
decreases as the sample size N increases
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Credits

Kevin Murphy’s book
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