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Parametric vs Non-parametric Models

we will focus on probabilistic models of the form:

X p(y |x) for supervised learning
X p(x) for unsupervised learning

there are many ways to define such models

one of the most important distinction:

X parametric models: have a fixed number of parameters
X non-parametric models: the number of parameters grow with the

amount of training data

pros and cons
X parametric models have the advantage of often being faster to use,

but the disadvantage of making stronger assumptions about the
nature of the data distributions

X non-parametric models are more flexible, but often
computationally intractable for large datasets
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K-nearest Neighbors Classifier

a simple example of a non-parametric classifier is the K nearest neighbor (KNN)
classifier

this simply “looks at” the K points in the training set that are nearest to the test
input x

memory-based learning, it can be derived from probabilistic framework
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K-nearest Neighbors Classifier

more formally

p(y = c|x,D,K) =
1

N

∑
i∈NK (x,D)

I(yi = c)

where

NK (x ,D) are the K nearest points to x

I(e) =

{
1 if e = true

0 if e = false
is the indicator function

N.B.: the higher the value of K , the more we average local data

Luigi Freda (”La Sapienza” University) Lecture 2 December 4, 2016 7 / 29



Outline

1 Parametric vs Non-parametric Models
Parametric vs Non-parametric Models

2 Non-parametric Models
A Simple Non-parametric Classifier: K-nearest Neighbors
The Curse of Dimensionality

3 Parametric Models
Linear Regression
Logistic Regression

4 Other Basic Concepts
Overfitting
Model Selection
No Free Lunch Theorem

Luigi Freda (”La Sapienza” University) Lecture 2 December 4, 2016 8 / 29



The Curse of Dimensionality
1/2

in general KNN classifier is simple and works well

problem: it has poor performance with high dimensional inputs

why?
consider an high-dimensional input space (D >> 1)

the number of training instances needs to grow exponentially with
the number of dimensions D to maintain a given accuracy

the method becomes no longer local

let’s see this in more detail..
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The Curse of Dimensionality
2/2

assume data are uniformly distributed in the D-dimensional unit cube

suppose we estimate the density of class labels around a test point x by “growing”
a hyper-cube around x until it contains a desired fraction f of the data points

the expected edge length of this cube will be eD(f ) = f 1/D

if D = 10, and we want to base our estimate on f = 10% of the data, then
e0.1 = 0.8 and we need to extend the cube 80% along each dimension around x!!

with f = 10% and D = 10 the method is no more local and we have to look at
points that are far away
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Parametric Models
Linear Regression

Linear Regression

y(x) = wTx + ε =
D∑
j=1

wjxj + ε

w ∈ RD is the weight vector

ε ∼ N (µ, σ2) is the residual error

N (µ, σ2) is the Gaussian distribution

This entails
p(y |x, θ) = N (µ(x), σ2(x)) = N (wTx, σ2)

µ(x) = wTx = [w0, w̃
T x̃]T where x = [1, x̃]T

σ(x) = σ

θ = (w, σ2) are the model parameters
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Parametric Models
Linear Regression

Polynomial Regression

if we replace x by a non-linear function φ(x)

y(x) = wTφ(x) + ε

we now have
p(y |x, θ) = N (wTφ(x), σ2)

µ(x) = wTφ(x) (basis function expansion)

if x ∈ R we can use φ(x) = [1, x , x2, ..., xd ] which is the vector of polynomial
basis functions

in general if x ∈ RD we can use a multivariate polynomial expansion

wTφ(x) =
∑

wi1 i2...iD

∏D
j=1 x

ij
j up to a certain degree d

θ = (w, σ2) are the model parameters
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Parametric Models
Linear Regression

input: 21 data points (xi , yi )

left: polynomial of degrees 14

right: polynomial of degrees 20

?do we obtain a better result by increasing the model complexity?
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Parametric Models
Logistic Regression

Logistic Regression

?can we generalize linear regression (y ∈ R) to binary classification (y ∈ {0, 1})?

two steps:

1 replace N (µ(x), σ2(x)) with Ber(y |µ(x)) (we want y ∈ {0, 1})
2 replace µ(x) = wTx with µ(x) = sigm(wTx) (we want 0 ≤ µ(x) ≤ 1)

where

Ber(y |µ(x)) = µ(x)I(y=1)(1− µ(x))I(y=0) is the Bernoulli distribution

I(e) = 1 if e is true, I(e) = 0 if e is false (indicator function)

sigm(η) = 1
1+exp(−η) is the sigmoid function (aka logistic function)
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Parametric Models
Logistic Regression

Logistic Regression

1 replace N (µ(x), σ2(x)) with Ber(y |µ(x)) (we want y ∈ {0, 1})
2 replace µ(x) = wTx with µ(x) = sigm(wTx) (we want 0 ≤ µ(x) ≤ 1)

hence, we started from a linear regression

p(y |x, θ) = N (wTx, σ2) where y ∈ R

to obtain a logistic regression

p(y |x,w) = Ber(y |sigm(wTx)) where y ∈ {0, 1}
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Parametric Models
Logistic Regression

Logistic regression - an example

solid black dots are data (xi , yi )

open red circles are predicted probabilities: p(yi = 1|xi ,w) = sigm(w0 + w1xi )

data is not linearly separable

in particular, here we have different yi for a same value xi

in general when data is not linearly separable, we can try to use the basis function
expansion as a further step
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Overfitting

Overfitting

when we fit highly flexible models, we should avoid trying to model
every minor variation in the input

these minor variations are more likely to be noise than ”true”
signal

!pay attention: do not to fit noise!
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Overfitting

Overfitting

an example with KNN

N.B.: the higher the value of K , the more we average local data
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Model Selection

suppose we have different models Mi , how to choose? (e.g. we have
to select K for the KNN classifier)

if f (x) is a classifier we can compute its misclassification rate

err(f ,D) =
1

N

N∑
i=1

I(f (xi ) 6= yi )

consider a KNN classifier: in principle, we can select K so as to have
the minimum misclassification rate on the training set

but our model is valuable if it returns a low misclassification rate over
future data (generalization error) and not on the training set itself

training set D −→ for estimating the model

test set T −→ for computing the generalization error

D ∩ T = ∅
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Model Selection

misclassification rate

err(f ,D) =
1

N

N∑
i=1

I(f (xi ) 6= yi )

select K so as to have the minimum misclassification rate

N.B.: on the left (small K) overfitting, on the right (large K) underfitting
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Model Selection

unfortunately we have not access to the test set (future data) to pick
the model of the right complexity K

we can create a ”test set” by partitioning the available training set D
in two parts:

1 the part actually used for training the model D̃
2 the part used for selecting the model complexity, the validation set V

then we have a partition D = D̃ ∪ V with D̃ ∩ V = ∅

common procedure

use 80% of the data for D̃ and 20% for V
fit all the models Mi by using D̃
pick the best model M∗ by evaluating all the Mi on V (find the
model M∗ with minimum misclassification error)

fit the selected model M∗ on the full training set D (now use full info)
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Model Selection

problem: if N = |D| is very small, we won’t have enough data to train the model

cross validation

split the data D in K equal folds {D1,D2, ...,DK}
for each model Mi :
for each k ∈ {1, 2, ...,K} use D̃k , D \ Dk to train model Mi and evaluate it on
Vk , Dk by computing the misclassification rate err(Mi ,Vk)

for each model Mi : compute the average error err(Mi ) =
K∑

k=1

err(Mi ,Vk) and use it

as an approx. for the test/generalization error of Mi

select the best model M∗ = argmin err(Mi ) and fit it on the full dataset D

N.B.: in general K = 5, if K = N we get a method called leave-one out cross
validation
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No Free Lunch Theorem

All models are wrong, but some models are useful – George Box

machine learning is concerned with devising

- different models
- different algorithms to fit them

there is no single best model that works optimally for all kinds of
problems!

why? assumptions limit our domain of application!

we have to design speed-accuracy-complexity tradeoffs selecting a
suitable model and an appropriate algorithm
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