Lecture 2 Basic Concepts

Luigi Freda

ALCOR Lab DIAG University of Rome "La Sapienza"

December 4, 2016

1

Parametric vs Non-parametric Models

Parametric vs Non-parametric Models

Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

Parametric vs Non-parametric Models

• Parametric vs Non-parametric Models

Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

B Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

- we will focus on probabilistic models of the form:
 - $\checkmark p(y|\mathbf{x})$ for supervised learning
 - $\checkmark p(\mathbf{x})$ for unsupervised learning

there are many ways to define such models

- one of the most important distinction:
 - ✓ parametric models: have a fixed number of parameters
 - non-parametric models: the number of parameters grow with the amount of training data
- pros and cons
 - ✓ parametric models have the advantage of often being faster to use, but the disadvantage of making stronger assumptions about the nature of the data distributions
 - ✓ non-parametric models are more flexible, but often computationally intractable for large datasets

Parametric vs Non-parametric Models
Parametric vs Non-parametric Models

Non-parametric Models

• A Simple Non-parametric Classifier: K-nearest Neighbors

• The Curse of Dimensionality

B Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

K-nearest Neighbors Classifier

- a simple example of a non-parametric classifier is the K nearest neighbor (KNN) classifier
- this simply "looks at" the K points in the training set that are nearest to the test input x
- memory-based learning, it can be derived from probabilistic framework

K-nearest Neighbors Classifier

more formally

$$p(y = c | \mathbf{x}, \mathcal{D}, \mathcal{K}) = \frac{1}{N} \sum_{i \in N_{\mathcal{K}}(x, D)} \mathbb{I}(y_i = c)$$

where

•
$$N_K(x, D)$$
 are the K nearest points to x
• $\mathbb{I}(e) = \begin{cases} 1 & \text{if } e = \text{true} \\ 0 & \text{if } e = \text{false} \end{cases}$ is the indicator function

N.B.: the higher the value of K, the more we average local data

Parametric vs Non-parametric Models
Parametric vs Non-parametric Models

Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

- in general KNN classifier is simple and works well
- problem: it has poor performance with high dimensional inputs

why?

consider an high-dimensional input space (D >> 1)

- the number of training instances needs to grow **exponentially** with the number of dimensions *D* to maintain a given **accuracy**
- the method becomes no longer local

let's see this in more detail ..

The Curse of Dimensionality

2/2

- assume data are uniformly distributed in the D-dimensional unit cube
- suppose we estimate the density of class labels around a test point x by "growing" a hyper-cube around x until it contains a desired fraction f of the data points
- the expected edge length of this cube will be $e_D(f) = f^{1/D}$
- if D = 10, and we want to base our estimate on f = 10% of the data, then $e_{0.1} = 0.8$ and we need to extend the cube 80% along each dimension around **x**!!
- with f = 10% and D = 10 the method is **no more local** and we have to look at points that are far away

Luigi Freda ("La Sapienza" University)

Parametric vs Non-parametric Models
 Parametric vs Non-parametric Models

2 Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

Linear Regression

Linear Regression

This entails

$$\boldsymbol{p}(\boldsymbol{y}|\mathbf{x},\theta) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}),\sigma^2(\boldsymbol{x})) = \mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{x},\sigma^2)$$

Linear Regression

Polynomial Regression

if we replace **x** by a non-linear function $\phi(\mathbf{x})$

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + \epsilon$$

we now have

$$p(y|\mathbf{x}, \theta) = \mathcal{N}(\mathbf{w}^{T}\phi(\mathbf{x}), \sigma^{2})$$

- $\mu(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$ (basis function expansion)
- if x ∈ ℝ we can use φ(x) = [1, x, x², ..., x^d] which is the vector of polynomial basis functions
- in general if $\mathbf{x} \in \mathbb{R}^{D}$ we can use a multivariate polynomial expansion $\mathbf{w}^{T} \phi(\mathbf{x}) = \sum w_{i_{1}i_{2}...i_{D}} \prod_{j=1}^{D} x_{j}^{i_{j}}$ up to a certain degree d
- $\theta = (w, \sigma^2)$ are the model parameters

Linear Regression

- input: 21 data points (x_i, y_i)
- left: polynomial of degrees 14
- right: polynomial of degrees 20

?do we obtain a better result by increasing the model complexity?

Parametric vs Non-parametric Models
 Parametric vs Non-parametric Models

2 Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

Logistic Regression

Logistic Regression

?can we generalize linear regression ($y \in \mathbb{R}$) to binary classification ($y \in \{0,1\}$)? two steps:

- replace $\mathcal{N}(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$ with $\operatorname{Ber}(y|\mu(\mathbf{x}))$ (we want $y \in \{0, 1\}$)
 replace $\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with $\mu(\mathbf{x}) = \operatorname{sigm}(\mathbf{w}^T \mathbf{x})$ (we want $0 \le \mu(\mathbf{x}) \le 1$)
 where
 value of the second second
 - $Ber(y|\mu(\mathbf{x})) = \mu(\mathbf{x})^{\mathbb{I}(y=1)}(1-\mu(\mathbf{x}))^{\mathbb{I}(y=0)}$ is the Bernoulli distribution
 - I(e) = 1 if e is true, I(e) = 0 if e is false (indicator function)
 - $\operatorname{sigm}(\eta) = \frac{1}{1 + \exp(-\eta)}$ is the sigmoid function (aka logistic function)

Logistic Regression

hence, we started from a linear regression

$$p(y|\mathbf{x}, \theta) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$
 where $y \in \mathbb{R}$

to obtain a logistic regression

$$p(y|\mathbf{x}, \mathbf{w}) = Ber(y|sigm(\mathbf{w}^T \mathbf{x}))$$
 where $y \in \{0, 1\}$

Logistic Regression

Logistic regression - an example

- solid black dots are data (x_i, y_i)
- open red circles are predicted probabilities: $p(y_i = 1 | x_i, \mathbf{w}) = sigm(w_0 + w_1 x_i)$
- data is **not** linearly separable
- in particular, here we have different y_i for a same value x_i

Luigi Freda ("La Sapienza" University)

Parametric vs Non-parametric Models
 Parametric vs Non-parametric Models

Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

Overfitting

Overfitting

- when we fit **highly flexible models**, we should avoid trying to model every minor variation in the input
- these minor variations are more likely to be noise than "true" signal

!pay attention: do not to fit noise!

Overfitting

Overfitting an example with KNN

N.B.: the higher the value of K, the more we average local data

Parametric vs Non-parametric Models
Parametric vs Non-parametric Models

2 Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

Model Selection

- suppose we have different models M_i, how to choose? (e.g. we have to select K for the KNN classifier)
- if $f(\mathbf{x})$ is a classifier we can compute its **misclassification rate**

$$\operatorname{err}(f, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

- consider a KNN classifier: in principle, we can select K so as to have the **minimum misclassification rate** on the training set
- but our model is valuable if it returns a low misclassification rate over future data (generalization error) and not on the training set itself
- \bullet training set $\mathcal{D} \longrightarrow$ for estimating the model
- test set $\mathcal{T} \longrightarrow$ for computing the generalization error

• $\mathcal{D} \cap \mathcal{T} = \emptyset$

Model Selection

misclassification rate

$$\operatorname{err}(f, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

• select K so as to have the **minimum misclassification rate**

N.B.: on the left (small K) overfitting, on the right (large K) underfitting

- unfortunately we have not access to the test set (future data) to pick the model of the right complexity K
- we can create a "test set" by partitioning the available training set D in two parts:
 - ${f 0}$ the part actually used for training the model ${ ilde {\cal D}}$
 - 2 the part used for selecting the model complexity, the validation set ${\cal V}$
- then we have a partition $\mathcal{D} = \tilde{\mathcal{D}} \cup \mathcal{V}$ with $\tilde{\mathcal{D}} \cap \mathcal{V} = \emptyset$

common procedure

- use 80% of the data for $\tilde{\mathcal{D}}$ and 20% for \mathcal{V}
- fit all the models M_i by using $\tilde{\mathcal{D}}$
- pick the **best model** M* by evaluating all the M_i on V (find the model M* with minimum misclassification error)
- fit the selected model M^* on the full training set \mathcal{D} (now use full info)

Model Selection

problem: if N = |D| is very small, we won't have enough data to train the model cross validation

- split the data \mathcal{D} in K equal folds $\{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_K\}$
- for each model M_i : for each $k \in \{1, 2, ..., K\}$ use $\tilde{\mathcal{D}}_k \triangleq \mathcal{D} \setminus \mathcal{D}_k$ to train model M_i and evaluate it on $\mathcal{V}_k \triangleq \mathcal{D}_k$ by computing the misclassification rate $err(M_i, \mathcal{V}_k)$
- for each model M_i : compute the average error $err(M_i) = \sum_{k=1}^{K} err(M_i, \mathcal{V}_k)$ and use it as an approx. for the test/generalization error of M_i
- select the best model $M^* = \operatorname{argmin} \operatorname{err}(M_i)$ and fit it on the full dataset \mathcal{D}

N.B.: in general K = 5, if K = N we get a method called **leave-one out cross** validation

Parametric vs Non-parametric Models
Parametric vs Non-parametric Models

2 Non-parametric Models

- A Simple Non-parametric Classifier: K-nearest Neighbors
- The Curse of Dimensionality

B Parametric Models

- Linear Regression
- Logistic Regression

- Overfitting
- Model Selection
- No Free Lunch Theorem

All models are wrong, but some models are useful - George Box

- machine learning is concerned with devising
 - different models
 - different algorithms to fit them
- there is no single best model that works optimally for all kinds of problems!
- why? assumptions limit our domain of application!
- we have to design **speed-accuracy-complexity** tradeoffs selecting a suitable model and an appropriate algorithm

• Kevin Murphy's book

æ