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Parametric vs Non-parametric Models

o we will focus on probabilistic models of the form:
V' p(y|x) for supervised learning
v p(x) for unsupervised learning
there are many ways to define such models
@ one of the most important distinction:

v/ parametric models: have a fixed number of parameters
v/ non-parametric models: the number of parameters grow with the
amount of training data

@ pros and cons

v/ parametric models have the advantage of often being faster to use,
but the disadvantage of making stronger assumptions about the
nature of the data distributions

v" non-parametric models are more flexible, but often
computationally intractable for large datasets
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K-nearest Neighbors Classifier

@ a simple example of a non-parametric classifier is the K nearest neighbor (KNN)
classifier

@ this simply “looks at” the K points in the training set that are nearest to the test
input x

@ memory-based learning, it can be derived from probabilistic framework
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K-nearest Neighbors Classifier

more formally

ply =c|x,D,K) = 1 Z ]I(y,:c
Nk (x5
where

@ Nk(x, D) are the K nearest points to x

1 ife=t
@ I(e) = I e = tue is the indicator function
0 if e=false

N.B.: the higher the value of K, the more we average local data
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The Curse of Dimensionality

1/2

@ in general KNN classifier is simple and works well

@ problem: it has poor performance with high dimensional inputs
why?
consider an high-dimensional input space (D >> 1)

@ the number of training instances needs to grow exponentially with
the number of dimensions D to maintain a given accuracy
@ the method becomes no longer local

let's see this in more detail..

Luigi Freda ("La Sapienza” University) Lecture 2

December 4, 2016 9 /29



The Curse of Dimensionality

2/2

@ assume data are uniformly distributed in the D-dimensional unit cube
@ suppose we estimate the density of class labels around a test point x by “growing”
a hyper-cube around x until it contains a desired fraction f of the data points
@ the expected edge length of this cube will be ep(f) = /P
@ if D =10, and we want to base our estimate on f = 10% of the data, then
e0.1 = 0.8 and we need to extend the cube 80% along each dimension around x!!
@ with f = 10% and D = 10 the method is no more local and we have to look at

points that are far away
\
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Parametric Models

Linear Regression

Linear Regression

D
yO) =wixt+e=> wx+e
j=1
@ w € R” is the weight vector o3
@ e~ N(,0?) is the residual error 02
@ N(p,0?) is the Gaussian distribution o
This entails
ply[x,8) = N(u(x),0°(x)) = N(w'x,0%)
@ u(x) =w'x=[wo,w'X]" where x = [1,%]"
@ o(x)=0

@ 0 = (w,0?) are the model parameters
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Parametric Models

Linear Regression

Polynomial Regression

if we replace x by a non-linear function ¢(x)

y(x) =w'g(x) + ¢

we now have

p(ylx,0) = N(w' ¢(x),0%)

@ u(x) = w¢(x) (basis function expansion)

@ if x € R we can use ¢(x) = [1,x, x%, ..., x| which is the vector of polynomial
basis functions

@ in general if x € R we can use a multivariate polynomial expansion
T — TP ;
wp(x) =D Wip...ip ;—1X/ up to a certain degree d

@ 0 = (w,0?) are the model parameters
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Parametric Models

Linear Regression

degree 14 degree 20

_5F

20

@ input: 21 data points (x;, yi)
@ left: polynomial of degrees 14

@ right: polynomial of degrees 20

7do we obtain a better result by increasing the model complexity?
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Parametric Models

Logistic Regression

Logistic Regression

?can we generalize linear regression (y € R) to binary classification (y € {0,1})?
two steps:

@ replace N (u(x), o%(x)) with Ber(y|u(x)) (we want y € {0,1})
@ replace p(x) = w'x with u(x) = sigm(w’x) (we want 0 < p(x) < 1)
where

@ Ber(y|u(x)) = u(x)""I(1 — u(x))0=9 is the Bernoulli distribution
@ I(e) =1 if eis true, I(e) = 0 if e is false (indicator function)

@ sigm(n) = m is the sigmoid function (aka logistic function)
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Parametric Models

Logistic Regression

Logistic Regression
@ replace N (uu(x), 0?(x)) with Ber(y|u(x)) (we want y € {0,1})
@ replace p(x) = w'x with p(x) = sigm(wx) (we want 0 < p(x) < 1)
hence, we started from a linear regression
p(y|x,0) = N(w'x,0?) where y € R
to obtain a logistic regression

p(y|x,w) = Ber(y|sigm(wx)) where y € {0,1}
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Parametric Models

Logistic Regression

Logistic regression - an example

(o]
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@ solid black dots are data (x;, yi)

@ open red circles are predicted probabilities: p(y; = 1|x;, w) = sigm(wo + wix;)
@ data is not linearly separable

@ in particular, here we have different y; for a same value x;

in general when data is not linearly separable, we can try to use the basis function
expansion as a further step
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Overfitting

Overfitting
o when we fit highly flexible models, we should avoid trying to model
every minor variation in the input
@ these minor variations are more likely to be noise than " true”
signal

degree 14 degree 20

105 5 10 15 20 o 5 10 15 20

Ipay attention: do not to fit noise!
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Overfitting

Overfitting
an example with KNN

predicted label, K=1 predicted label, K=5

N.B.: the higher the value of K, the more we average local data
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Model Selection

suppose we have different models M;, how to choose? (e.g. we have
to select K for the KNN classifier)

if £(x) is a classifier we can compute its misclassification rate

1 N
err(f,D) = Nzﬂ(f(xi) £ Yi)
i=1

consider a KNN classifier: in principle, we can select K so as to have
the minimum misclassification rate on the training set

but our model is valuable if it returns a low misclassification rate over
future data (generalization error) and not on the training set itself

training set D — for estimating the model
test set 7 — for computing the generalization error

DNT =0

Luigi Freda ("La Sapienza” University) Lecture 2 December 4, 2016 23 /29



Model Selection

@ misclassification rate
1M
err(f, D) = NZH(f(x,-) # i)
i=1

@ select K so as to have the minimum misclassification rate
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N.B.: on the left (small K) overfitting, on the right (large K) underfitting
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Model Selection

e unfortunately we have not access to the test set (future data) to pick
the model of the right complexity K

@ we can create a "test set” by partitioning the available training set D
in two parts:

@ the part actually used for training the model D
@ the part used for selecting the model complexity, the validation set V

@ then we have a partition D = DUV with DNV =0

common procedure
@ use 80% of the data for D and 20% for V
o fit all the models M; by using D

@ pick the best model M* by evaluating all the M; on V (find the
model M* with minimum misclassification error)

o fit the selected model M* on the full training set D (now use full info)
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Model Selection

problem: if N = |D| is very small, we won't have enough data to train the model
cross validation
@ split the data D in K equal folds {D1, D>, ..., Dk}

@ for each model M;: y
for each k € {1,2,..., K} use Dx = D\ Dy to train model M; and evaluate it on
Vi £ Dy by computing the misclassification rate err(M;, Vi)

K
@ for each model M;: compute the average error err(M;) = " err(M;, Vi) and use it
k=1
as an approx. for the test/generalization error of M;

@ select the best model M* = argmin err(M;) and fit it on the full dataset D

N.B.: in general K =5, if K = N we get a method called leave-one out cross
validation
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No Free Lunch Theorem

All models are wrong, but some models are useful — George Box

@ machine learning is concerned with devising

- different models
- different algorithms to fit them

@ there is no single best model that works optimally for all kinds of
problems!

@ why? assumptions limit our domain of application!

@ we have to design speed-accuracy-complexity tradeoffs selecting a
suitable model and an appropriate algorithm
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@ Kevin Murphy's book
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