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Probability: Bayesian vs Freq rpretations

@ what is probability?

@ there are actually at least two different interpretations of probability
© frequentist: probabilities represent long run frequencies of events (trials)
@ Bayesian: probability is used to quantify our uncertainty about something
(information rather than repeated trials)

@ coin toss event:
@ frequentist: if we flip the coin many times, we expect it to land heads about
half the time
@ Bayesian: we believe the coin is equally likely to land heads or tails on the
next toss

@ advantage of the Bayesian interpretation: it can be used to model our uncertainty
about events that do not have long term frequencies; frequentist needs repetition

@ the basic rules of probability theory are the same, no matter which
interpretation is adopted
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Foundations of Probability

In order to define a probability space we need 3 components {2, F, P}:

@ sample space Q: the set of all the outcomes of a random experiment. Here, each
outcome (realization) w € 2 can be thought of as a complete description of the
state of the real world at the end of the experiment

@ event space F: a set whose elements A € F (called events) are subsets of Q2
(i.e., AC Q is a collection of possible outcomes of an experiment)
F should satisfy 3 properties (o-algebra of events):

QlcFr
Q AcF=A=Q\AeF (closure under complementation)
Q AL A,...e F=>UA €F (closure under countable union)

@ probability measure P: a function P : F — R that satisfies the following 3
axioms of probability

Q P(A)>0forall Ac F

Q P(Q) =1
© if A, A,, ... are disjoint events (i.e., A; N A; = () whenever | # j), then
P(UiA)) =3 P(A) (P is countably additive)
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A simple example

experiment: tossing a six-sided dice
- sample space Q = {1,2,3,4,5,6} (a simple representation)
- trivial event space
o F={0,0}
e unique probability measure satisfying the requirements is given by
P®)=0,P(Q) =1
- power set event space

o F =29 (i.e., the set of all subsets of Q)
e a possible probability measure
P(i)=1/6 for i € {1,2,3,4,5,6} = Q

question: do the above sample space outcomes completely describe the
state of a dice-tossing experiment?
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Probability Measure Properties

some important properties on events (can be inferred from axioms)
AC B= P(A) < P(B)

P(AN B) < min(P(A), P(B))

union bound: P(AU B) < P(A) + P(B)

complement rule: P(A) = P(Q\ A) =1 — P(A)

impossible event: P(()) =0

law of total probability: if Az, ..., Ax are a set of disjoint events such
that iglA,- = Q then ZNIP(A,-) =1

A B

o general addition rule!: P(AUB) = P(A)+ P(B) — P(AN B)

levents can be represented by using Venn diagrams
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Conditional Probability

@ let B be an event with non-zero probability, i.e. p(B) > 0

o the conditional probability of any event A given B is defined as

P(A|B) = p(:‘(g)B )

@ in other words, P(A|B) is the probability measure of the event A after
observing the occurrence of event B

@ two events are called independent iff
P(AN B) = P(A)P(B) (or equivalently P(A|B) = P(A))

o therefore, independence is equivalent to saying that observing B
does not have any effect on the probability of A
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Conditional Probability

a frequentist intuition of conditional probability
@ N is total number of experiment trials

e for an event E, let's define P(E) = % where Ng is the number of
trials where E is verified

hence for events A and B (considering the limit N — o)
e P(A)

% where N, is the number of trials where A is verified
o P(B) = D& where Nj is the number of trials where B is verified

e P(ANB) = NAAB where Njag is the number of trials where both A
and B are ver|f|ed

let's consider only the trials where B is verified, hence

o P(AIB) = Nﬁ/ABB (Ng > 0 now acts as N)
e dividing by N, one obtains P(A|B) = Nﬁé‘;{\/"’ - Ef(\g’f)
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Random Variables

intuition: a random variable represents an interesting "aspect” of the
outcomes w € Q

more formally:
@ a random variable X is a function X : Q — R

@ a random variable is denoted by using upper case letters X(w) or
more simply X (here X is a function)

@ the particular values (instances) of a random variable may take on
are denoted by using lower case letters x (here x € R)

types of random variables:
o discrete random variable: function X(w) can only take values in a
finite set X = {x1, x2, ..., Xm} or countably infinite set (e.g. X =N)

e continuous random variable: function X(w) can take continuous
values in R

Luigi Freda ("La Sapienza” University) Lecture 3

October 19, 2016 12 / 42



Random Variables

a random variable is a measurable function

since X(w) takes values in R, let's try to define an " event space’” on R: in general
we would like to observe if X(w) € B for some subset B C R

as "event space” on R, we can consider 3 the Borel o-algebra on the real line?,
which is generated by the set of half-lines {(—o0, a] : a € (—o0,0)} by repeatedly
applying union, intersection and complement operations

an element B C R of the Borel o-algebra B is called a Borel set
the set of all open/closed subintervals in R are contained in B
for instance, (a, b) € B and [a, b] € B

a random variable is a measurable function X : Q — R, i.e.
X NB)={weQ:X(w)eB}cF foreach BcB

i.e., if we consider an "event” B € B this can be represented by a proper event
Fg € F where we can apply the probability measure P

2here we should use the notation B(R), for simplicity we drop-R
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Induced Probability Space

@ we have defined the probability measure P on F,ie. P: F —- R
@ how to define the probability measure Px w.r.t. X?
Px(B) 2 P(X"YB)) = P({w € Q: X(w) € B})

which is well-defined given that X~1(B) ¢ F

@ at this point, we have an induced probability space
{Qx, Fx, Px} = {R, B, Px} and we can equivalently reason on it
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Discrete Random Variables

discrete Random Variable (RV)

@ X(w) can only take values in a finite set X = {x1, X2, ..., Xm} or in a
countably infinite set

@ how to define the probability measure Px w.r.t. X?
Px(X = xx) 2 P{w : X(w) = xx})

@ in this case Px returns measure one to a countable set of reals

@ a simpler way to represent the probability measure is to directly
specify the probability of each value the discrete RV can assume

@ in particular, a Probability Mass Function (PMF) is a function
px : R — R such that

px(X = X) £ Px(X = X)

@ it's very common to drop the subscript X and denote the PMF with
p(X) = px(X = x)

Luigi Freda ("La Sapienza” University) Lecture 3 October 19, 2016 16 / 42



© Probability Theory Review

@ Important Rules of Probability

Luigi Freda ("La Sapienza” University) Lecture 3 October 19, 2016 17 / 42



Important Rules of Probability

considering two discrete RV X and Y at the same time

@ sum rule

p(X) = Zp(X, Y) (marginalization)
Y

@ product rule
p(X,Y) = p(X|Y)p(Y)
@ chain rule:

p(X1:p) = p(X1)p(X2|X1)p(X3]| X2, X1)...0(Xp|X1:p-1)

where 1 : D denotes the set {1,2,...,D} (Matlab-like notation)

Luigi Freda ("La Sapienza” University) Lecture 3 October 19, 2016 18 / 42



Important Rules of Probability

a frequentist intuition of the sum rule ~—

Y nij } rj

N number of trials T

n;j number of trials in which X = x; and Y = y;

°
°

@ ¢; number of trials in which X = x;, one has ¢; = Zj njj
@ rj number of trials in which Y = y;, one has r; = ), nj;
°

p(X =x;,Y =yj) = % (considering the limit N — o0)

° p(X:x,-):%:Zj%:sz(X:x;,Y:yj)
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Bayes' Theorem

combining the definition of condition probability with the product and sum
rules:

@ p(X|Y) = 2% Y)) (conditional prob. def.)
Q p(X,Y)= p(Y|X)p(X) (product rule)
)
)

Q@ p(Y)=>p(X,Y)=>p(Y|X)p(X) (sum rule + product rule
X X
one obtains the Bayes' Theorem (plug 2 e 3into 1

p(Y[X)p(X)

PIXIY) = 5p(¥X)p(X)

N.B.: we could write p(X|Y) o p(Y|X)p(X); the denominator p(Y) = > p(Y|X)p(X)
X

can be considered as a normalization constant
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Bayes' Theorem

An Example

events:
@ C = breast cancer present, 'C = no cancer
@ M = positive mammogram test, M = negative mammogram test
probabilities:
@ p(C)=0.4% (hence p(C) =1 — p(C) = 99.6%)
@ if there is cancer, the probability of a pos mammogram is p(M|C) = 80%
@ if there is no cancer, we still have p(M|C) = 10%

false conclusion: positive mammogram = the person is 80% likely to have cancer
question: what is the conditional probability p(C|M)?

_ p(M|C)p(C) _ p(M|C)p(C)
p(CIM) = p(M) p(M|C)p(C) + p(M[C)p(C)
0.8 x 0.004 ~ 0.031

~ 0.8 x 0.004 + 0.1 x 0.996
true conclusion: positive mammogram = the person is about 3% likely to have cancer
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Independence and Conditional Independence

considering two RV X and Y at the same time

@ X and Y are unconditionally independent
X LY < p(X,Y)=p(X)p(Y)

in this case p(X|Y) = p(X) and p(Y|X) = p(Y)
@ Xi, Xs, ..., Xp are mutually independent if

p(X1, X2, ..., Xp) = p(X1)p(X2)...p(Xp)
@ X and Y are conditionally independent
X 1 Y|Z < p(X. Y|Z) = p(X|Z)p(Y|Z)

in this case p(X|Y,Z) = p(X|Z2)
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Continuous Random Variables

continuous random variable
@ X(w) can take any value on R

@ how to define the probability measure Px w.r.t. X?
Px(X € B) 2 P(X"Y(B)) (with B € B)

@ in this case Px gives zero measure to every singleton set, and hence
to every countable set3

3unless we consider some particular/degenerate cases
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CDF and PDF

Definitions

given a continuous RV X

@ Cumulative Distribution Function (CDF): F(x) £ Px(X < x)
e 0<F(x)<1
o the CDF is a monotonically non-decreasing
F(x) < F(x + Ax) with Ax >0
@ F(—00) =0, F(o) =1
o Px(a< X <b)=F(b)— F(a)

A dF

T dx

we assume F is continuous and the derivative exists
F(x) = Px(X <x)= [*_ p(£)d¢

Px(x < X < x + dx) = p(x)dx

Px(a < X < b) = [? p(x)dx

@ Probability Density Function (PDF): p(x)

p(x) acts as a density in the above computations
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PDF

Some Properties

reconsider
Q Px(a<X<b)= fab p(x)dx
Q Px(a< X <a+dx) = p(x)dx

@ the first implies [*_p(x)dx =1 (consider (a, b) = (—o0,0)))
@ the second implies p(x) > 0 for all x € R

@ it is possible that p(x) > 1, for instance, consider the uniform distribution with
PDF

1
b—a
if a=0and b=1/2 then p(x) =2 in [a, b]

Unif(x|a, b) = I(a < x < b)
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PDF

Observation

@ assume F is continuous (this was required for defining p(x))
@ we have that Px(X =x) =0 (zero probability on a singleton set)
@ in fact for € > 0:

Px(X =x) < Px(x —e < X <x)=F(x)— F(x —¢) = dF(x,¢)

and given that F is continuous Px(X = x) < 6Ii_r:10c5l-_(x, €)=0
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given that the CDF F is monotonically increasing, let’s consider its inverse F~!
F7(a) = xa <= Px(X < xa) =

X, is called the a quantile of F

F~1(0.5) is the median

F~1(0.25) and F1(0.75) are the lower and upper quartiles

for symmetric PDFs (e.g. N(0,1)) we have F7*(1 — a/2) = —F~*(a/2) and the
central interval (F7*(a/2), F71(1 — «/2)) contains 1 — « of the mass probability

a2 a2

@™ (a/2) 0 @ (1-0/2)
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Mean and Variance

e mean or expected value p

for a discrete RV:  p=E[X] £ _ x p(x)
for a continuos RV: = E[X] £ Jeex X P(x) dx  (defined if [ _ |x| p(x) dx < o0)

e variance o2 = var[X] 2 E[(X — p)?]

varlX] = E(X ] = | (x = 1)p(x)ox =

XEX

_ / N Cp(x)dx — 2u / et W2 / p(x)dx = E[X?] — 12

XEX
(this can be also obtained for discrete RV)

e standard deviation o = std[X] = \/var[X]
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e n-th moment

for a discrete RV:  E[X"] £ 3" _ x" p(x)

for a continuos RV:  E[X"] £ Jeex X" p(x) dx (defined if [ |x|" p(x) dx < o)
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Binomial Distribution

@ we toss a coin n times

@ X is a discrete RV with x € {0, 1, ..., n}, the occurred number of heads
@ 0 is the probability of heads

@ X ~ Bin(n,0) i.e., X has a binomial distribution with PMF

Bin(k|n,0) £ (:) 0" (1 —0)"* (= Px(X =k))

where we use the binomial coefficient

n\ a n!
k _(n—k)!k!

@ mean = nf

@ var = nf(1 —0)

N.B.: recall that (a+ b)" = > ()a*b"*
k=0
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Bernoulli Distribution

@ we toss a coin only one time
@ X is a discrete RV with x € {0,1} where 1 = head, 0 = tail
@ 0 is the probability of heads
@ X ~ Ber(6) i.e., X has a Bernoulli distribution with PMF
Ber(x|0) £ 6071 (1 — 9)'=" (= Px(X =x))
that is
o= {7, 1524
@ mean =140
@ var=6(1-190)
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Multinomial Distribution

we toss a K-sided dice n times

the possible outcome is x = (x1, X2, ..., Xk ) where x; € {0,1, ..., n} is the number of
times side j occurred

K
n=>3 1%

0; is the probability of having side j

ZJ‘K:1 ;=1
X ~ Mu(n,0) i.e., X has a multinomial distribution with PMF

K

n X

Mu(x|n, 6) < <X1 XK> Hejj
i1

where we use the multinumial coefficient

n n!
X1 .o XK x11xo!.. . xk!

which is the num of ways to divide a set of size n into subsets of size x1, x2, ..., Xk

>
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Multinoulli Distribution

@ we toss the dice only one time

@ the possible outcome is x = (I(x; = 1),I(x2 = 1), ...,I(xxk = 1)) where x; € {0, 1}
represents if side j occurred or not (dummy enconding or one-hot encoding)

@ 0; is the probability of having side j, i.e., p(x; = 1|0) = 0;
@ X ~ Cat(@) i.e., X has the categorical distribution (or multinoulli)

Cat(x|0) = Mu(x|1,0) £ Hel

Luigi Freda ("La Sapienza” University) Lecture 3 October 19, 2016 37 /42



Outline

© Common Discrete Distributions - Univariate

@ Poisson Distribution

Luigi Freda ("La Sapienza” University) Lecture 3 October 19, 2016 38/



Poisson Distribution

@ X is a discrete RV with x € {0,1,2,...} (support on NT)
@ X ~ Poi(\) i.e., X has a Poisson distribution with PMF
Poi(x|\) £ efk)\—|
@ recall that e* = ’:—T
x=0

@ this distribution is used as a model for counts of rare events (e.g. accidents,
failures, etc)

Poig.=1.000) Poi(i=10.000)

035 012 ]
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Empirical Distribution

@ given a dataset D = {x1, x2, ..., xn }

@ the empirical distribution is defined as
N
px) = > wids, (x)
i=1
@ 0 < w; <1 are the weights
N
o EW; =1
i=1

@ I, (x) =1I(x=x)

@ this can be view as an histogram with "spikes” at x; € D and 0-probability out D
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@ Kevin Murphy's book

@ A. Maleki and T. Do "Review of Probability Theory”, Stanford
University

o G. Chandalia "A gentle introduction to Measure Theory"
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