# Lecture 3 Probability - Part 1

Luigi Freda

ALCOR Lab DIAG University of Rome "La Sapienza"

October 19, 2016

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Probability: Bayesian vs Frequentist Interpretations



- what is probability?
- there are actually at least two different interpretations of probability
  - **1 frequentist**: probabilities represent long run frequencies of events (**trials**)
  - Bayesian: probability is used to quantify our uncertainty about something (information rather than repeated trials)
- coin toss event:
  - frequentist: if we flip the coin many times, we expect it to land heads about half the time
  - Sayesian: we believe the coin is equally likely to land heads or tails on the next toss
- advantage of the Bayesian interpretation: it can be used to model our uncertainty about events that do not have long term frequencies; frequentist needs repetition
- the basic rules of probability theory are the same, no matter which interpretation is adopted

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Foundations of Probability

In order to define a **probability space** we need 3 components  $\{\Omega, \mathcal{F}, P\}$ :

- sample space  $\Omega$ : the set of all the outcomes of a random experiment. Here, each outcome (realization)  $\omega \in \Omega$  can be thought of as a *complete description of the state of the real world* at the end of the experiment
- event space  $\mathcal{F}$ : a set whose elements  $A \in \mathcal{F}$  (called events) are subsets of  $\Omega$  (i.e.,  $A \subseteq \Omega$  is a collection of possible outcomes of an experiment)  $\mathcal{F}$  should satisfy 3 properties ( $\sigma$ -algebra of events):
  - $\emptyset \in \mathcal{F}$
- probability measure P: a function  $P: \mathcal{F} \to \mathbb{R}$  that satisfies the following 3 axioms of probability
  - **1**  $P(A) \geq 0$  for all  $A \in \mathcal{F}$
  - $P(\Omega) = 1$
  - (3) if  $A_1, A_2, ...$  are disjoint events (i.e.,  $A_i \cap A_j = \emptyset$  whenever  $i \neq j$ ), then  $P(\cup_i A_i) = \sum_i P(A_i)$  (P is countably additive)

# A simple example



### experiment: tossing a six-sided dice

- sample space  $\Omega = \{1,2,3,4,5,6\}$
- (a simple representation)

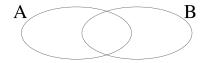
- trivial event space
  - $\mathcal{F} = \{\emptyset, \Omega\}$
  - unique probability measure satisfying the requirements is given by  $P(\emptyset)=0, P(\Omega)=1$
- power set event space
  - $\mathcal{F}=2^{\Omega}$  (i.e., the set of all subsets of  $\Omega$ )
  - a possible probability measure P(i) = 1/6 for  $i \in \{1, 2, 3, 4, 5, 6\} = \Omega$

question: do the above sample space outcomes completely describe the state of a dice-tossing experiment?

# Probability Measure Properties

some important properties on events (can be inferred from axioms)

- $A \subseteq B \Rightarrow P(A) \leq P(B)$
- $P(A \cap B) \leq min(P(A), P(B))$
- union bound:  $P(A \cup B) \leq P(A) + P(B)$
- complement rule:  $P(\overline{A}) = P(\Omega \setminus A) = 1 P(A)$
- impossible event:  $P(\emptyset) = 0$
- law of total probability: if  $A_1,...,A_k$  are a set of disjoint events such that  $\bigcup\limits_{i=1}^N A_i = \Omega$  then  $\sum\limits_{i=1}^N P(A_i) = 1$



• general addition rule<sup>1</sup>:  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

# Conditional Probability

- let B be an event with non-zero probability, i.e. p(B) > 0
- the **conditional probability** of any event A given B is defined as

$$P(A|B) = \frac{p(A \cap B)}{p(B)}$$

- in other words, P(A|B) is the probability measure of the event A after observing the occurrence of event B
- two events are called independent iff

$$P(A \cap B) = P(A)P(B)$$
 (or equivalently  $P(A|B) = P(A)$ )

• therefore, **independence** is equivalent to saying that observing *B* does not have any effect on the probability of *A* 

# Conditional Probability

# a frequentist intuition of conditional probability

- N is total number of experiment trials
- for an event E, let's define  $P(E) \triangleq \frac{N_E}{N}$  where  $N_E$  is the number of trials where E is verified

hence for events A and B (considering the limit  $N \to \infty$ )

- $P(A) = \frac{N_A}{N}$  where  $N_A$  is the number of trials where A is verified
- $P(B) = \frac{N_B}{N}$  where  $N_B$  is the number of trials where B is verified
- $P(A \cap B) = \frac{N_{A \wedge B}}{N}$  where  $N_{A \wedge B}$  is the number of trials where both A and B are verified

let's consider only the trials where B is verified, hence

- $P(A|B) = \frac{N_{A \wedge B}}{N_B}$   $(N_B > 0 \text{ now acts as } N)$
- dividing by N, one obtains  $P(A|B) = \frac{N_{A \wedge B}/N}{N_B/N} = \frac{P(A \cap B)}{P(B)}$

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



## Random Variables

intuition: a random variable represents an interesting "aspect" of the outcomes  $\omega \in \Omega$ 

### more formally:

- a random variable X is a function  $X: \Omega \to \mathbb{R}$
- a random variable is denoted by using **upper case letters**  $X(\omega)$  or more simply X (here X is a function)
- the particular values (instances) of a random variable may take on are denoted by using lower case letters x (here  $x \in \mathbb{R}$ )

### types of random variables:

- **discrete random variable**: function  $X(\omega)$  can only take values in a finite set  $\mathcal{X} = \{x_1, x_2, ..., x_m\}$  or countably infinite set (e.g.  $\mathcal{X} = \mathbb{N}$ )
- continuous random variable: function  $X(\omega)$  can take continuous values in  $\mathbb R$

### Random Variables

#### a random variable is a measurable function

- since  $X(\omega)$  takes values in  $\mathbb{R}$ , let's try to define an "event space" on  $\mathbb{R}$ : in general we would like to observe if  $X(\omega) \in B$  for some subset  $B \subset \mathbb{R}$
- as "event space" on  $\mathbb{R}$ , we can consider  $\mathcal{B}$  the Borel  $\sigma$ -algebra on the real line<sup>2</sup>, which is generated by the set of half-lines  $\{(-\infty,a]:a\in(-\infty,\infty)\}$  by repeatedly applying union, intersection and complement operations
- an element  $B \subset \mathbb{R}$  of the Borel  $\sigma$ -algebra  $\mathcal{B}$  is called a **Borel set**
- ullet the set of all open/closed subintervals in  ${\mathbb R}$  are contained in  ${\mathcal B}$
- for instance,  $(a, b) \in \mathcal{B}$  and  $[a, b] \in \mathcal{B}$
- a random variable is a **measurable function**  $X : \Omega \to \mathbb{R}$ , i.e.

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F} \text{ for each } B \in \mathcal{B}$$

i.e., if we consider an "event"  $B\in\mathcal{B}$  this can be represented by a proper event  $F_B\in\mathcal{F}$  where we can apply the probability measure P

<sup>&</sup>lt;sup>2</sup>here we should use the notation  $\mathcal{B}(\mathbb{R})$ , for simplicity we drop  $\mathbb{R}$ 

# Induced Probability Space

- ullet we have defined the probability measure P on  $\mathcal{F}$ , i.e.  $P:\mathcal{F} 
  ightarrow \mathbb{R}$
- how to define the probability measure  $P_X$  w.r.t. X?

$$P_X(B) \triangleq P(X^{-1}(B)) = P(\{\omega \in \Omega : X(\omega) \in B\})$$

which is well-defined given that  $X^{-1}(B) \in \mathcal{F}$ 

• at this point, we have an **induced probability space**  $\{\Omega_X, \mathcal{F}_X, P_X\} \triangleq \{\mathbb{R}, \mathcal{B}, P_X\}$  and we can equivalently reason on it

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



### Discrete Random Variables

### discrete Random Variable (RV)

- $X(\omega)$  can only take values in a finite set  $\mathcal{X} = \{x_1, x_2, ..., x_m\}$  or in a countably infinite set
- how to define the probability measure  $P_X$  w.r.t. X?

$$P_X(X = x_k) \triangleq P(\{\omega : X(\omega) = x_k\})$$

- $\bullet$  in this case  $P_X$  returns measure one to a countable set of reals
- a simpler way to represent the probability measure is to directly specify the probability of each value the discrete RV can assume
- in particular, a **Probability Mass Function** (PMF) is a function  $p_X : \mathbb{R} \to \mathbb{R}$  such that

$$p_X(X=x) \triangleq P_X(X=x)$$

• it's very common to drop the subscript X and denote the PMF with  $p(X) = p_X(X = x)$ 

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Important Rules of Probability

considering two discrete RV X and Y at the same time

sum rule

$$p(X) = \sum_{Y} p(X, Y)$$
 (marginalization)

product rule

$$p(X,Y)=p(X|Y)p(Y)$$

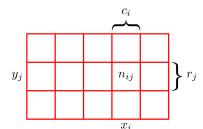
chain rule:

$$p(X_{1:D}) = p(X_1)p(X_2|X_1)p(X_3|X_2,X_1)...p(X_D|X_{1:D-1})$$

where 1:D denotes the set  $\{1,2,...,D\}$  (Matlab-like notation)

# Important Rules of Probability

### a frequentist intuition of the sum rule



- N number of trials
- $n_{ij}$  number of trials in which  $X = x_i$  and  $Y = y_j$
- $c_i$  number of trials in which  $X = x_i$ , one has  $c_i = \sum_j n_{ij}$
- $r_j$  number of trials in which  $Y = y_j$ , one has  $r_j = \sum_i n_{ij}$
- $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$  (considering the limit  $N \to \infty$ )

#### hence:

• 
$$p(X = x_i) = \frac{c_i}{N} = \sum_j \frac{n_{ij}}{N} = \sum_j p(X = x_i, Y = y_j)$$



# Bayes' Theorem

combining the definition of condition probability with the product and sum rules:

(conditional prob. def.)

**2** 
$$p(X, Y) = p(Y|X)p(X)$$

(product rule)

(sum rule + product rule)

one obtains the Bayes' Theorem

(plug 2 e 3 into 1)

$$p(X|Y) = \frac{p(Y|X)p(X)}{\sum_{X} p(Y|X)p(X)}$$

N.B.: we could write  $p(X|Y) \propto p(Y|X)p(X)$ ; the denominator  $p(Y) = \sum_{X} p(Y|X)p(X)$  can be considered as a normalization constant

# Bayes' Theorem

#### An Example

#### events:

- C = breast cancer present,  $\overline{C} = \text{no cancer}$
- M= positive mammogram test,  $\overline{M}=$  negative mammogram test probabilities:

• 
$$p(C) = 0.4\%$$
 (hence  $p(\overline{C}) = 1 - p(C) = 99.6\%$ )

- if there is cancer, the probability of a pos mammogram is p(M|C) = 80%
- if there is no cancer, we still have  $p(M|\overline{C}) = 10\%$

**false conclusion**: positive mammogram  $\Rightarrow$  the person is 80% likely to have cancer **question**: what is the conditional probability p(C|M)?

$$p(C|M) = \frac{p(M|C)p(C)}{p(M)} = \frac{p(M|C)p(C)}{p(M|C)p(C) + p(M|\overline{C})p(\overline{C})}$$
$$= \frac{0.8 \times 0.004}{0.8 \times 0.004 + 0.1 \times 0.996} = 0.031$$

true conclusion: positive mammogram  $\Rightarrow$  the person is about 3% likely to have cancer

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Independence and Conditional Independence

considering two RV X and Y at the same time

X and Y are unconditionally independent

$$X \perp Y \iff p(X, Y) = p(X)p(Y)$$

in this case p(X|Y) = p(X) and p(Y|X) = p(Y)

•  $X_1, X_2, ..., X_D$  are mutually independent if

$$p(X_1, X_2, ..., X_D) = p(X_1)p(X_2)...p(X_D)$$

• X and Y are conditionally independent

$$X \perp Y|Z \iff p(X,Y|Z) = p(X|Z)p(Y|Z)$$

in this case p(X|Y,Z) = p(X|Z)



- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



## Continuous Random Variables

#### continuous random variable

- $X(\omega)$  can take any value on  $\mathbb R$
- how to define the probability measure  $P_X$  w.r.t. X?

$$P_X(X \in B) \triangleq P(X^{-1}(B))$$
 (with  $B \in \mathcal{B}$ )

• in this case  $P_X$  gives zero measure to every singleton set, and hence to every countable set<sup>3</sup>

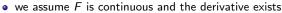
# CDF and PDF

#### **Definitions**

#### given a continuous RV X

- Cumulative Distribution Function (CDF):  $F(x) \triangleq P_X(X \leq x)$ 
  - $0 \le F(x) \le 1$
  - the CDF is a monotonically non-decreasing  $F(x) \le F(x + \Delta x)$  with  $\Delta x > 0$
  - $F(-\infty) = 0$ ,  $F(\infty) = 1$
  - $P_X(a < X \le b) = F(b) F(a)$



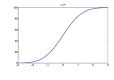


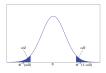
• 
$$F(x) = P_X(X \le x) = \int_{-\infty}^x p(\xi)d\xi$$

• 
$$P_X(x < X \le x + dx) \approx p(x)dx$$

• 
$$P_X(a < X \le b) = \int_a^b p(x) dx$$

p(x) acts as a density in the above computations





# **PDF**

#### Some Properties

#### reconsider

- **1**  $P_X(a < X \le b) = \int_a^b p(x) dx$
- $P_X(a < X \le a + dx) \approx p(x)dx$
- the first implies  $\int_{-\infty}^{\infty} p(x) dx = 1$  (consider  $(a,b) = (-\infty,\infty)$ ))
- the second implies  $p(x) \ge 0$  for all  $x \in \mathbb{R}$
- it is possible that p(x) > 1, for instance, consider the **uniform distribution** with PDF

$$\mathsf{Unif}(x|a,b) = \frac{1}{b-a}\mathbb{I}(a \le x \le b)$$

if a = 0 and b = 1/2 then p(x) = 2 in [a, b]

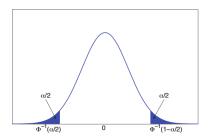
# **PDF**

#### Observation

- assume F is continuous (this was required for defining p(x))
- we have that  $P_X(X = x) = 0$  (zero probability on a singleton set)
- in fact for  $\epsilon \geq 0$ :  $P_X(X = x) \leq P_X(x \epsilon < X \leq x) = F(x) F(x \epsilon) = \delta F(x, \epsilon)$  and given that F is continuous  $P_X(X = x) \leq \lim_{\epsilon \to 0} \delta F(x, \epsilon) = 0$

# Quantile

- given that the CDF F is monotonically increasing, let's consider its inverse  $F^{-1}$
- $F^{-1}(\alpha) = x_{\alpha} \iff P_X(X \le x_{\alpha}) = \alpha$
- $x_{\alpha}$  is called the  $\alpha$  quantile of F
- $F^{-1}(0.5)$  is the **median**
- $F^{-1}(0.25)$  and  $F^{-1}(0.75)$  are the lower and upper quartiles
- for symmetric PDFs (e.g.  $\mathcal{N}(0,1)$ ) we have  $F^{-1}(1-\alpha/2)=-F^{-1}(\alpha/2)$  and the central interval  $(F^{-1}(\alpha/2),F^{-1}(1-\alpha/2))$  contains  $1-\alpha$  of the mass probability



## Mean and Variance

ullet mean or expected value  $\mu$ 

for a discrete RV: 
$$\mu = \mathbb{E}[X] \triangleq \sum_{x \in X} x \ p(x)$$

for a continuos RV: 
$$\mu = \mathbb{E}[X] \triangleq \int_{x \in \chi} x \ p(x) \ dx$$
 (defined if  $\int_{x \in \chi} |x| \ p(x) \ dx < \infty$ )

• variance  $\sigma^2 = \text{var}[X] \triangleq \mathbb{E}[(X - \mu)^2]$ 

$$var[X] = \mathbb{E}[(X - \mu)^{2}] = \int_{x \in \chi} (x - \mu)^{2} p(x) dx =$$

$$= \int_{x \in \chi} x^{2} p(x) dx - 2\mu \int_{x \in \chi} x p(x) dx + \mu^{2} \int_{x \in \chi} p(x) dx = \mathbb{E}[X^{2}] - \mu^{2}$$

(this can be also obtained for discrete RV)

• standard deviation  $\sigma = \operatorname{std}[X] = \sqrt{\operatorname{var}[X]}$ 



### **Moments**

#### • n-th moment

for a discrete RV: 
$$\mathbb{E}[X^n] \triangleq \sum_{x \in Y} x^n \ p(x)$$

for a continuos RV: 
$$\mathbb{E}[X^n] \triangleq \int_{x \in \chi} x^n \ p(x) \ dx$$
 (defined if  $\int_{x \in \chi} |x|^n \ p(x) \ dx < \infty$ )

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Binomial Distribution

- we toss a coin n times
- X is a discrete RV with  $x \in \{0, 1, ..., n\}$ , the occurred number of heads
- $\bullet$   $\theta$  is the probability of heads
- $X \sim \text{Bin}(n, \theta)$  i.e., X has a binomial distribution with PMF

$$Bin(k|n,\theta) \triangleq \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
 (=  $P_X(X=k)$ )

where we use the binomial coefficient

$$\binom{n}{k} \triangleq \frac{n!}{(n-k)!k!}$$

- mean =  $n\theta$
- $var = n\theta(1-\theta)$

N.B.: recall that  $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ 



# Bernoulli Distribution

- we toss a coin only one time
- X is a discrete RV with  $x \in \{0,1\}$  where 1 = head, 0 = tail
- $\bullet$   $\theta$  is the probability of heads
- $X \sim \text{Ber}(\theta)$  i.e., X has a **Bernoulli distribution** with PMF

$$\mathsf{Ber}(x|\theta) \triangleq \theta^{\mathbb{I}(x=1)} (1-\theta)^{\mathbb{I}(x=0)}$$
  $(= P_X(X=x))$ 

that is

$$\mathsf{Ber}(x| heta) = egin{cases} heta & \mathsf{if} \ x = 1 \ 1 - heta & \mathsf{if} \ x = 0 \end{cases}$$

- mean  $= \theta$
- $var = \theta(1 \theta)$



- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# Multinomial Distribution

- we toss a K-sided dice n times
- the possible outcome is  $\mathbf{x} = (x_1, x_2, ..., x_K)$  where  $x_j \in \{0, 1, ..., n\}$  is the number of times side j occurred
- $n = \sum_{j=1}^K x_j$
- $\theta_i$  is the probability of having side j
- $\bullet \ \sum_{i=1}^K \theta_i = 1$
- $X \sim \text{Mu}(n, \theta)$  i.e., X has a multinomial distribution with PMF

$$\mathsf{Mu}(\mathbf{x}|n,\boldsymbol{\theta}) \triangleq \binom{n}{x_1 \dots x_K} \prod_{j=1}^K \theta_j^{x_j}$$

where we use the multinumial coefficient

$$\begin{pmatrix} n \\ x_1 \dots x_K \end{pmatrix} \triangleq \frac{n!}{x_1! x_2! \dots x_K!}$$

which is the num of ways to divide a set of size n into subsets of size  $x_1, x_2, ..., x_K$ 



# Multinoulli Distribution

- we toss the dice only one time
- the possible outcome is  $\mathbf{x} = (\mathbb{I}(x_1 = 1), \mathbb{I}(x_2 = 1), ..., \mathbb{I}(x_K = 1))$  where  $x_j \in \{0, 1\}$  represents if side j occurred or not (dummy enconding or one-hot encoding)
- $\theta_i$  is the probability of having side j, i.e.,  $p(x_i = 1 | \theta) = \theta_i$
- $X \sim Cat(\theta)$  i.e., X has the categorical distribution (or multinoulli)

$$\mathsf{Cat}(\mathbf{x}|oldsymbol{ heta}) = \mathsf{Mu}(\mathbf{x}|1,oldsymbol{ heta}) riangleq \prod_{j=1}^{K} heta_j^{\mathsf{x}_j}$$

- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution

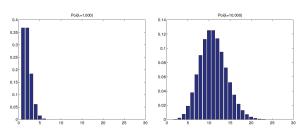


# Poisson Distribution

- X is a discrete RV with  $x \in \{0, 1, 2, ...\}$  (support on  $\mathbb{N}^+$ )
- $X \sim \text{Poi}(\lambda)$  i.e., X has a **Poisson distribution** with PMF

$$\mathsf{Poi}(x|\lambda) \triangleq \mathsf{e}^{-\lambda} \frac{\lambda^x}{x!}$$

- recall that  $e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$
- this distribution is used as a model for counts of rare events (e.g. accidents, failures, etc)



- Intro
  - Bayesian vs Frequentist Interpretations
- Probability Theory Review
  - Foundations of Probability
  - Random Variables
  - Discrete Random Variables
  - Important Rules of Probability
  - Independence and Conditional Independence
  - Continuous Random Variables
- 3 Common Discrete Distributions Univariate
  - Binomial and Bernoulli Distributions
  - Multinomial and Multinoulli Distributions
  - Poisson Distribution
  - Empirical Distribution



# **Empirical Distribution**

- given a dataset  $\mathcal{D} = \{x_1, x_2, ..., x_N\}$
- the empirical distribution is defined as

$$p(x) = \sum_{i=1}^{N} w_i \delta_{x_i}(x)$$

- $0 \le w_i \le 1$  are the weights
- $\bullet \ \delta_{x_i}(x) = \mathbb{I}(x = x_i)$
- ullet this can be view as an **histogram** with "spikes" at  $x_i \in \mathcal{D}$  and 0-probability out  $\mathcal{D}$

### Credits

- Kevin Murphy's book
- A. Maleki and T. Do "Review of Probability Theory", Stanford University
- G. Chandalia "A gentle introduction to Measure Theory"