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Probability: Bayesian vs Frequentist Interpretations

what is probability?

there are actually at least two different interpretations of probability
1 frequentist: probabilities represent long run frequencies of events (trials)
2 Bayesian: probability is used to quantify our uncertainty about something

(information rather than repeated trials)

coin toss event:
1 frequentist: if we flip the coin many times, we expect it to land heads about

half the time
2 Bayesian: we believe the coin is equally likely to land heads or tails on the

next toss

advantage of the Bayesian interpretation: it can be used to model our uncertainty
about events that do not have long term frequencies; frequentist needs repetition

the basic rules of probability theory are the same, no matter which
interpretation is adopted
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Foundations of Probability

In order to define a probability space we need 3 components {Ω,F ,P}:
sample space Ω: the set of all the outcomes of a random experiment. Here, each
outcome (realization) ω ∈ Ω can be thought of as a complete description of the
state of the real world at the end of the experiment

event space F : a set whose elements A ∈ F (called events) are subsets of Ω
(i.e., A ⊆ Ω is a collection of possible outcomes of an experiment)

F should satisfy 3 properties (σ-algebra of events):

1 ∅ ∈ F
2 A ∈ F ⇒ A = Ω \ A ∈ F (closure under complementation)
3 A1,A2, ... ∈ F ⇒ ∪iAi ∈ F (closure under countable union)

probability measure P: a function P : F → R that satisfies the following 3

axioms of probability

1 P(A) ≥ 0 for all A ∈ F
2 P(Ω) = 1
3 if A1,A2, ... are disjoint events (i.e., Ai ∩ Aj = ∅ whenever i 6= j), then

P(∪iAi ) =
∑

i P(Ai ) (P is countably additive)
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A simple example

experiment: tossing a six-sided dice

- sample space Ω = {1, 2, 3, 4, 5, 6} (a simple representation)

- trivial event space

F = {∅,Ω}
unique probability measure satisfying the requirements is given by
P(∅) = 0,P(Ω) = 1

- power set event space

F = 2Ω (i.e., the set of all subsets of Ω)
a possible probability measure
P(i) = 1/6 for i ∈ {1, 2, 3, 4, 5, 6} = Ω

question: do the above sample space outcomes completely describe the
state of a dice-tossing experiment?
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Probability Measure Properties

some important properties on events (can be inferred from axioms)

A ⊆ B ⇒ P(A) ≤ P(B)

P(A ∩ B) ≤ min(P(A),P(B))

union bound: P(A ∪ B) ≤ P(A) + P(B)

complement rule: P(A) = P(Ω \ A) = 1− P(A)

impossible event: P(∅) = 0

law of total probability: if A1, ...,Ak are a set of disjoint events such

that
N
∪
i=1

Ai = Ω then
N∑
i=1

P(Ai ) = 1

general addition rule1: P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
1events can be represented by using Venn diagrams
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Conditional Probability

let B be an event with non-zero probability, i.e. p(B) > 0

the conditional probability of any event A given B is defined as

P(A|B) =
p(A ∩ B)

p(B)

in other words, P(A|B) is the probability measure of the event A after
observing the occurrence of event B

two events are called independent iff

P(A ∩ B) = P(A)P(B) (or equivalently P(A|B) = P(A))

therefore, independence is equivalent to saying that observing B
does not have any effect on the probability of A
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Conditional Probability

a frequentist intuition of conditional probability

N is total number of experiment trials

for an event E , let’s define P(E ) , NE
N where NE is the number of

trials where E is verified

hence for events A and B (considering the limit N →∞)

P(A) = NA
N where NA is the number of trials where A is verified

P(B) = NB
N where NB is the number of trials where B is verified

P(A ∩ B) = NA∧B
N where NA∧B is the number of trials where both A

and B are verified

let’s consider only the trials where B is verified, hence

P(A|B) = NA∧B
NB

(NB > 0 now acts as N)

dividing by N, one obtains P(A|B) = NA∧B/N
NB/N

= P(A∩B)
P(B)
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Random Variables

intuition: a random variable represents an interesting ”aspect” of the
outcomes ω ∈ Ω

more formally:

a random variable X is a function X : Ω→ R
a random variable is denoted by using upper case letters X (ω) or
more simply X (here X is a function)

the particular values (instances) of a random variable may take on
are denoted by using lower case letters x (here x ∈ R)

types of random variables:

discrete random variable: function X (ω) can only take values in a
finite set X = {x1, x2, ..., xm} or countably infinite set (e.g. X = N )

continuous random variable: function X (ω) can take continuous
values in R
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Random Variables

a random variable is a measurable function

since X (ω) takes values in R, let’s try to define an ”event space” on R: in general
we would like to observe if X (ω) ∈ B for some subset B ⊂ R
as ”event space” on R, we can consider B the Borel σ-algebra on the real line2,
which is generated by the set of half-lines {(−∞, a] : a ∈ (−∞,∞)} by repeatedly
applying union, intersection and complement operations

an element B ⊂ R of the Borel σ-algebra B is called a Borel set

the set of all open/closed subintervals in R are contained in B
for instance, (a, b) ∈ B and [a, b] ∈ B
a random variable is a measurable function X : Ω→ R, i.e.

X−1(B) = {ω ∈ Ω : X (ω) ∈ B} ∈ F for each B ∈ B

i.e., if we consider an ”event” B ∈ B this can be represented by a proper event
FB ∈ F where we can apply the probability measure P

2here we should use the notation B(R), for simplicity we drop R
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Induced Probability Space

we have defined the probability measure P on F , i.e. P : F → R
how to define the probability measure PX w.r.t. X?

PX (B) , P(X−1(B)) = P({ω ∈ Ω : X (ω) ∈ B})

which is well-defined given that X−1(B) ∈ F
at this point, we have an induced probability space
{ΩX ,FX ,PX} , {R,B,PX} and we can equivalently reason on it
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Discrete Random Variables

discrete Random Variable (RV)

X (ω) can only take values in a finite set X = {x1, x2, ..., xm} or in a
countably infinite set

how to define the probability measure PX w.r.t. X?

PX (X = xk) , P({ω : X (ω) = xk})

in this case PX returns measure one to a countable set of reals

a simpler way to represent the probability measure is to directly
specify the probability of each value the discrete RV can assume

in particular, a Probability Mass Function (PMF) is a function
pX : R→ R such that

pX (X = x) , PX (X = x)

it’s very common to drop the subscript X and denote the PMF with
p(X ) = pX (X = x)
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Important Rules of Probability

considering two discrete RV X and Y at the same time

sum rule

p(X ) =
∑
Y

p(X ,Y ) (marginalization)

product rule
p(X ,Y ) = p(X |Y )p(Y )

chain rule:

p(X1:D) = p(X1)p(X2|X1)p(X3|X2,X1)...p(XD |X1:D−1)

where 1 : D denotes the set {1, 2, ...,D} (Matlab-like notation)
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Important Rules of Probability

a frequentist intuition of the sum rule

N number of trials

nij number of trials in which X = xi and Y = yj

ci number of trials in which X = xi , one has ci =
∑

j nij

rj number of trials in which Y = yj , one has rj =
∑

i nij

p(X = xi ,Y = yj) =
nij
N (considering the limit N →∞)

hence:

p(X = xi ) = ci
N =

∑
j
nij
N =

∑
j p(X = xi ,Y = yj)
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Bayes’ Theorem

combining the definition of condition probability with the product and sum
rules:

1 p(X |Y ) = p(X ,Y )
P(Y ) (conditional prob. def.)

2 p(X ,Y ) = p(Y |X )p(X ) (product rule)

3 p(Y ) =
∑
X

p(X ,Y ) =
∑
X

p(Y |X )p(X ) (sum rule + product rule)

one obtains the Bayes’ Theorem (plug 2 e 3 into 1)

p(X |Y ) =
p(Y |X )p(X )∑
X

p(Y |X )p(X )

N.B.: we could write p(X |Y ) ∝ p(Y |X )p(X ); the denominator p(Y ) =
∑
X

p(Y |X )p(X )

can be considered as a normalization constant
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Bayes’ Theorem
An Example

events:

C = breast cancer present, C = no cancer

M = positive mammogram test, M = negative mammogram test

probabilities:

p(C) = 0.4% (hence p(C) = 1− p(C) = 99.6%)

if there is cancer, the probability of a pos mammogram is p(M|C) = 80%

if there is no cancer, we still have p(M|C) = 10%

false conclusion: positive mammogram ⇒ the person is 80% likely to have cancer
question: what is the conditional probability p(C |M)?

p(C |M) =
p(M|C)p(C)

p(M)
=

p(M|C)p(C)

p(M|C)p(C) + p(M|C)p(C)

=
0.8× 0.004

0.8× 0.004 + 0.1× 0.996
= 0.031

true conclusion: positive mammogram ⇒ the person is about 3% likely to have cancer
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Independence and Conditional Independence

considering two RV X and Y at the same time

X and Y are unconditionally independent

X ⊥ Y ⇐⇒ p(X ,Y ) = p(X )p(Y )

in this case p(X |Y ) = p(X ) and p(Y |X ) = p(Y )

X1,X2, ...,XD are mutually independent if

p(X1,X2, ...,XD) = p(X1)p(X2)...p(XD)

X and Y are conditionally independent

X ⊥ Y |Z ⇐⇒ p(X ,Y |Z ) = p(X |Z )p(Y |Z )

in this case p(X |Y ,Z ) = p(X |Z )
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Continuous Random Variables

continuous random variable

X (ω) can take any value on R
how to define the probability measure PX w.r.t. X?

PX (X ∈ B) , P(X−1(B)) (with B ∈ B)

in this case PX gives zero measure to every singleton set, and hence
to every countable set3

3unless we consider some particular/degenerate cases
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CDF and PDF
Definitions

given a continuous RV X

Cumulative Distribution Function (CDF): F (x) , PX (X ≤ x)

0 ≤ F (x) ≤ 1
the CDF is a monotonically non-decreasing
F (x) ≤ F (x + ∆x) with ∆x > 0
F (−∞) = 0, F (∞) = 1
PX (a < X ≤ b) = F (b)− F (a)

Probability Density Function (PDF): p(x) ,
dF

dx

we assume F is continuous and the derivative exists
F (x) = PX (X ≤ x) =

∫ x

−∞ p(ξ)dξ
PX (x < X ≤ x + dx) ≈ p(x)dx

PX (a < X ≤ b) =
∫ b

a
p(x)dx

p(x) acts as a density in the above computations
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PDF
Some Properties

reconsider

1 PX (a < X ≤ b) =
∫ b

a
p(x)dx

2 PX (a < X ≤ a + dx) ≈ p(x)dx

the first implies
∫∞
−∞ p(x)dx = 1 (consider (a, b) = (−∞,∞)))

the second implies p(x) ≥ 0 for all x ∈ R
it is possible that p(x) > 1, for instance, consider the uniform distribution with
PDF

Unif(x |a, b) =
1

b − a
I(a ≤ x ≤ b)

if a = 0 and b = 1/2 then p(x) = 2 in [a, b]
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PDF
Observation

assume F is continuous (this was required for defining p(x))

we have that PX (X = x) = 0 (zero probability on a singleton set)

in fact for ε ≥ 0:
PX (X = x) ≤ PX (x − ε < X ≤ x) = F (x)− F (x − ε) = δF (x , ε)
and given that F is continuous PX (X = x) ≤ lim

ε→0
δF (x , ε) = 0
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Quantile

given that the CDF F is monotonically increasing, let’s consider its inverse F−1

F−1(α) = xα ⇐⇒ PX (X ≤ xα) = α

xα is called the α quantile of F

F−1(0.5) is the median

F−1(0.25) and F−1(0.75) are the lower and upper quartiles

for symmetric PDFs (e.g. N (0, 1)) we have F−1(1− α/2) = −F−1(α/2) and the
central interval (F−1(α/2),F−1(1− α/2)) contains 1− α of the mass probability
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Mean and Variance

• mean or expected value µ

for a discrete RV: µ = E[X ] ,
∑

x∈χ x p(x)

for a continuos RV: µ = E[X ] ,
∫
x∈χ x p(x) dx (defined if

∫
x∈χ |x | p(x) dx <∞)

• variance σ2 = var[X ] , E[(X − µ)2]

var[X ] = E[(X − µ)2] =

∫
x∈χ

(x − µ)2p(x)dx =

=

∫
x∈χ

x2p(x)dx − 2µ

∫
x∈χ

xp(x)dx + µ2

∫
x∈χ

p(x)dx = E[X 2]− µ2

(this can be also obtained for discrete RV)

• standard deviation σ = std[X ] =
√

var[X ]
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Moments

• n-th moment

for a discrete RV: E[X n] ,
∑

x∈χ xn p(x)

for a continuos RV: E[X n] ,
∫
x∈χ xn p(x) dx (defined if

∫
x∈χ |x |

n p(x) dx <∞)
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Binomial Distribution

we toss a coin n times

X is a discrete RV with x ∈ {0, 1, ..., n}, the occurred number of heads

θ is the probability of heads

X ∼ Bin(n, θ) i.e., X has a binomial distribution with PMF

Bin(k|n, θ) ,

(
n

k

)
θk(1− θ)n−k (= PX (X = k))

where we use the binomial coefficient(
n

k

)
,

n!

(n − k)!k!

mean = nθ

var = nθ(1− θ)

N.B.: recall that (a + b)n =
n∑

k=0

(
n
k

)
akbn−k
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Bernoulli Distribution

we toss a coin only one time

X is a discrete RV with x ∈ {0, 1} where 1 = head, 0 = tail

θ is the probability of heads

X ∼ Ber(θ) i.e., X has a Bernoulli distribution with PMF

Ber(x |θ) , θI(x=1)(1− θ)I(x=0) (= PX (X = x))

that is

Ber(x |θ) =

{
θ if x = 1

1− θ if x = 0

mean = θ

var = θ(1− θ)
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Multinomial Distribution

we toss a K -sided dice n times

the possible outcome is x = (x1, x2, ..., xK ) where xj ∈ {0, 1, ..., n} is the number of
times side j occurred

n =
∑K

j=1 xj

θj is the probability of having side j∑K
j=1 θj = 1

X ∼ Mu(n, θ) i.e., X has a multinomial distribution with PMF

Mu(x|n,θ) ,

(
n

x1 ... xK

)
K∏
j=1

θ
xj
j

where we use the multinumial coefficient(
n

x1 ... xK

)
,

n!

x1!x2!...xK !

which is the num of ways to divide a set of size n into subsets of size x1, x2, ..., xK
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Multinoulli Distribution

we toss the dice only one time

the possible outcome is x = (I(x1 = 1), I(x2 = 1), ..., I(xK = 1)) where xj ∈ {0, 1}
represents if side j occurred or not (dummy enconding or one-hot encoding)

θj is the probability of having side j , i.e., p(xj = 1|θ) = θj

X ∼ Cat(θ) i.e., X has the categorical distribution (or multinoulli)

Cat(x|θ) = Mu(x|1,θ) ,
K∏
j=1

θ
xj
j
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Poisson Distribution

X is a discrete RV with x ∈ {0, 1, 2, ...} (support on N+)

X ∼ Poi(λ) i.e., X has a Poisson distribution with PMF

Poi(x |λ) , e−λ λ
x

x!

recall that eλ =
∞∑
x=0

λx

x!

this distribution is used as a model for counts of rare events (e.g. accidents,
failures, etc)
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Empirical Distribution

given a dataset D = {x1, x2, ..., xN}
the empirical distribution is defined as

p(x) =
N∑
i=1

wiδxi (x)

0 ≤ wi ≤ 1 are the weights

N∑
i=1

wi = 1

δxi (x) = I(x = xi )

this can be view as an histogram with ”spikes” at xi ∈ D and 0-probability out D
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Credits

Kevin Murphy’s book

A. Maleki and T. Do ”Review of Probability Theory”, Stanford
University

G. Chandalia ”A gentle introduction to Measure Theory”
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