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Gaussian (Normal) Distribution

X is a continuous RV with values x ∈ R
X ∼ N (µ, σ2), i.e. X has a Gaussian distribution or normal distribution

N (x |µ, σ2) ,
1√

2πσ2
e
− 1

2σ2 (x−µ)2

(= PX (X = x))

mean E[X ] = µ

mode µ

variance var[X ] = σ2

precision λ = 1
σ2

(µ− 2σ, µ+ 2σ) is the approx 95% interval

(µ− 3σ, µ+ 3σ) is the approx. 99.7% interval
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Gaussian (Normal) Distribution

Normal,
Bell-shaped Curve
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Gaussian (Normal) Distribution

why Gaussian distribution is the most widely used in statistics?

1 easy to interpret: just two parameters θ = (µ, σ2)

2 central limit theorem: the sum of independent random variables has an
approximately Gaussian distribution

3 least number of assumptions (maximum entropy) subject to constraints of having
mean = µ and variance = σ2

4 simple mathematical form, easy to manipulate and implement

homework: show that ∫ ∞
−∞

1√
2πσ2

e
− 1

2σ2 (x−µ)2

dx = 1
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Degenerate PDFs

X is a continuous RV with values x ∈ R
consider a Gaussian distribution with σ2 → 0

δ(x − µ) , lim
σ2→0
N (x |µ, σ2)

δ(x) is the Dirac delta function, with

δ(x) =

{
∞ if x = 0

0 if x 6= 0

one has
∞∫
−∞

δ(x)dx = 1 ( lim
σ2→0

∞∫
−∞
N (x |µ, σ2)dx = 1)

sifting property
∞∫
−∞

f (x)δ(x − µ)dx = f (µ)
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Student’s t Distribution

X is a continuous RV with values x ∈ R
X ∼ T (µ, σ2, ν), i.e. X has a Student’s t distribution

T (x |µ, σ2, ν) ∝

[
1 +

1

ν

(
x − µ
σ

)2
]−( ν+1

2
)

(= PX (X = x))

scale parameter σ2 > 0

degrees of freedom ν

mean E[X ] = µ defined if ν > 1

mode µ

variance var[X ] = νσ2

(ν−2)
defined if ν > 2
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Student’s t Distribution

a comparison of N (0, 1), T (0, 1, 1) and Lap(0, 1,
√

2)

PDF log(PDF)
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Student’s t Distribution
Pros

why should we use the Student distribution?

it is less sensitive to outliers than the Gaussian distribution

without outliers with outliers
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Laplace Distribution

X is a continuous RV with values x ∈ R
X ∼ Lap(µ, b), i.e. X has a Laplace distribution

Lap(x |µ, b) ,
1

2b
exp

(
− |x − µ|

b

)
(= PX (X = x))

scale parameter b > 0

mean E[X ] = µ

mode µ

variance var[X ] = 2b2

compared to Gaussian distribution, Laplace distribution

is more rubust to outliers (see above)

puts more probability density at µ (see above)
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Gamma Distribution

X is a continuous RV with values x ∈ R+ (x > 0)

X ∼ Ga(a, b), i.e. X has a gamma distribution

Ga(x |a, b) ,
ba

Γ(a)
xa−1e−xb (= PX (X = x))

shape a > 0

rate b > 0

the gamma function is

Γ(x) ,

∞∫
−∞

ux−1e−udu

where Γ(x) = (x − 1)! for x ∈ N and Γ(1) = 1

mean E[X ] = a
b

mode a−1
b

variance var[X ] = a
b2

N.B.: there are several distributions which are just special cases of the Gamma (e.g.
exponential, Erlang, Chi-squared)
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Gamma Distribution

some Ga(a, b = 1) distributions

right: an empirical PDF of some rainfall data
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Inverse Gamma Distribution

X is a continuous RV with values x ∈ R+ (x > 0)

if X ∼ Ga(a, b), i.e. 1
X
∼ IG(a, b)

IG(a, b) is the inverse gamma distribution

IG(x |a, b) ,
ba

Γ(a)
x−(a+1)e−b/x (= PX (X = x))

mean E[X ] = b
a−1

(defined if a > 1)

mode b
a+1

variance var[X ] = b2

(a−1)2(a−2)
(defined if a > 2)

Luigi Freda (”La Sapienza” University) Lecture 3 October 19, 2016 18 / 46



Outline

1 Common Continuous Distributions - Univariate
Gaussian Distribution
Degenerate PDFs
Student’s t Distribution
Laplace Distribution
Gamma Distribution
Beta Distribution
Pareto Distribution

2 Joint Probability Distributions - Multivariate
Joint Probability Distributions
Joint CDF and PDF
Marginal PDF
Conditional PDF and Independence
Covariance and Correlation
Correlation and Independence
Common Multivariate Distributions

Luigi Freda (”La Sapienza” University) Lecture 3 October 19, 2016 19 / 46



Beta Distribution

X is a continuous RV with values x ∈ [0, 1]

X ∼ Beta(a, b), i.e. X has a beta distribution

Beta(x |a, b) =
1

B(a, b)
xa−1(1− x)b−1 (= PX (X = x))

requirements: a > 0 and b > 0

the beta function is

B(a, b) ,
Γ(a)Γ(b)

Γ(a + b)

mean E[X ] = a
a+b

mode a−1
a+b−2

variance var[X ] = ab
(a+b)2(a+b+1)
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Beta Distribution

beta distribution

Beta(x |a, b) =
1

B(a, b)
xa−1(1− x)b−1 (= PX (X = x))

requirements: a > 0 and b > 0

if a = b = 1 then Beta(x |1, 1) = Unif (x |1, 1) in the interval [0, 1] ⊂ R
this distribution can be used to represent a prior on a probability value to be
estimated
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Pareto Distribution

X is a continuous RV with values x ∈ R+ (x > 0)

X ∼ Pareto(k,m), i.e. X has a Pareto distribution

Pareto(x |k,m) = kmkx−(k+1)I(x ≥ m) (= PX (X = x))

as k →∞ the distribution approaches δ(x)

mean E[X ] = km
k−1

(defined for k > 1)

mode m

variance var[X ] = m2k
(k−1)2(k−2)

this distribution is particular useful for its long tail
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Joint Probability Distributions

consider an ensemble of RVs X1, ...,XD

we can define a new RV X , (X1, ...,XD)T

we are now interested in modeling the stochastic relationship between
X1, ...,XD

in this case x = (x1, ..., xD)T ∈ RD denotes a particular value
(instance) of X
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Joint Cumulative Distribution Function
Definition

given a continuous RV X with values x ∈ RD

Cumulative Distribution Function (CDF)

F (x) = F (x1, ..., xD) , PX(X ≤ x) = PX(X1 ≤ x1, ...,XD ≤ xD)

properties:

0 ≤ F (x) ≤ 1
F (x1, ..., xj , ..., xD) ≤ F (x1, ..., xj + ∆xj , ..., xD) with ∆xj > 0
lim∆xj→0+ F (x1, ..., xj + ∆xj , ..., xD) = F (x1, ..., xj , ..., xD) (right-continuity)
F (−∞, ...,−∞) = 0
F (+∞, ...,+∞) = 1
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Joint Probability Density Function
Definitions

given a continuous RV X with values x ∈ RD

Probability Density Function (PDF)

p(x) = p(x1, ..., xD) ,
∂DF

∂x1, ..., ∂xD

we assume the above partial derivative of F exists

properties:

F (x) = PX(X ≤ x) =
∫ x1

−∞ ...
∫ xD
−∞ p(ξ1, ..., ξD)dξ1...dξD

PX(x < X ≤ x + dx) ≈ p(x)dx1...dxD = p(x)dx

PX(a < X ≤ b) =
∫ b1

a1
...
∫ bD
aD

p(x)dx1...dxD

N.B.: p(x) acts as a density in the above computations
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Joint Probability Density Function
Definitions

for a discrete RV X we have instead

Probability Mass Function (PMF): p(x) , PX(X = x)

in the above properties we can remove dx and replace integrals with sums

the CDF can be defined as

F (x) , PX(X ≤ x) =
∑
ξi≤x

p(ξi )
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Joint PDF
Some Properties

reconsider

1 F (x) = PX(X ≤ x) =
∫ x1

−∞ ...
∫ xD
−∞ p(ξ1, ..., ξD)dξ1...dξD

2 PX(x < X ≤ x + dx) ≈ p(x)dx1...dxD = p(x)dx

the first implies
∫
−∞ ...

∫∞
−∞ p(x)dx = 1 (consider (x1, ..., xD)→ (∞, ...,∞)))

the second implies p(x) ≥ 0 for all x ∈ RD

it is possible that p(x) > 1 for some x ∈ RD
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Joint PDF
Marginal PDF

suppose we want the PDF of Q , (X1,X2, ...,XD−1)T (we don’t care about XD)

FQ(q) = PQ(Q ≤ q) = PX(X ≤ (q,∞)T ) (XD can take any value in (−∞,∞) )

PX(X ≤ (q,∞)) =
∫ x1

−∞ ...
∫ xD−1

−∞

∫∞
−∞ pX(x)dx1...dxD−1dxD =∫ x1

−∞ ...
∫ xD−1

−∞

( ∫∞
−∞ pX(x)dxD

)
dx1...dxD−1

hence we can define the marginal PDF

pQ(q) = pQ(x1, ..., xD−1) ,
∫ ∞
−∞

pX(x1, ..., xD)dxD

and one has

FQ(q) = FQ(x1, ..., xD−1) =

∫ x1

−∞
...

∫ xD−1

−∞
pQ(q)dx1...dxD−1

the above procedure can be also used to marginalize more variables

the above procedure can be used for obtaining a marginal PMF for discrete
variables by removing the dx and replacing integrals with sums, i.e.

pQ(q) = pQ(x1, x2, ..., xD−1) ,
∑
xD

pX(x1, x2, ..., xD)
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Joint PDF
Conditional PDF and Independence

suppose we want the PDF of Q , (X1,X2, ...,XD−1)T given XD = xD

PQ|XD
(q < Q ≤ q + dq | xD < XD ≤ xD + dxD) =

PX(x < X ≤ x + dx)

PxD (xD < XD ≤ xD + dxD)

PX(x < X ≤ x + dx) ≈ pX(x)dx1...dxD

PXD (xD < XD ≤ xD + dxD) ≈ pXD (xD)dxD

hence PQ|XD
(q < Q ≤ q + dq | xD < XD ≤ xD + dxD) ≈ pX(x)

pXD (xD)
dx1...dxD−1

we can define the conditional PDF

pQ|XD
(q|xD) = pQ|XD

(x1, ..., xD−1|xD) ,
pX(x)

pXD (xD)

Q and XD are independent ⇐⇒ pX(x) = pQ(q)pxD (xD)

if Q and XD are independent then pQ|XD
(q|xD) = pQ(q)

the above definitions can be generalized to define the conditional PDF w.r.t. more
variables
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Covariance

covariance of two RVs X and Y

cov[X ,Y ] , E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ]E[Y ] (= cov[Y ,X ])

if x ∈ Rd , the mean value is

E[x] ,
∫ ∞
−∞

...

∫ ∞
−∞

xp(x)dx =

E[x1]
...

E[xD ]

 ∈ RD

if x ∈ Rd , the covariance matrix is

cov[x] , E[(x− E[x])(x− E[x])T ] =

=


var[X1] cov[X1,X2] . . . cov[X1,Xd ]

cov[X2,X1] var[X2] . . . cov[X2,Xd ]
...

...
. . .

...
cov[Xd ,X1] cov[Xd ,X2] . . . var[Xd ]

 ∈ RD×D

N.B.: cov[x] = cov[x]T and cov[x] ≥ 0
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Correlation

correlation coefficient of two RVs X and Y

corr[X ,Y ] ,
cov[X ,Y ]√

var[X ] var[Y ]

it can be to shown that 0 ≤ corr[X ,Y ] ≤ 1 (homework1)

corr[X ,Y ] = 0⇐⇒ cov[X ,Y ] = 0

if x ∈ Rd , its correlation matrix is

corr[x] ,


corr[X1,X1] corr[X1,X2] . . . corr[X1,Xd ]
corr[X2,X1] corr[X2,X2] . . . corr[X2,Xd ]

...
...

. . .
...

corr[Xd ,X1] corr[Xd ,X2] . . . corr[Xd ,Xd ]

 ∈ RD×D

N.B.: corr[x] = corr[x]T

1use the fact that
( ∫

f (t)g(t)dt
)2 ≤

∫
f 2dt

∫
g 2dt
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Correlation and Independence

Property 1: there is a linear relationship between X and Y iff corr[X ,Y ] = 1, i.e.

corr[X ,Y ] = 1⇐⇒ Y = aX + b

the correlation coefficient represents a degree of linear relationship
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Correlation and Independence

Property 2: if X and Y are independent (p(X ,Y ) = p(X )p(Y )) then
cov[X ,Y ] = 0 and corr[X ,Y ] = 0, i.e. (homework)

X ⊥ Y =⇒ corr[X ,Y ] = 0

Property 3:
corr[X ,Y ] = 0 6=⇒ X ⊥ Y

example: with X ∼ U(−1, 1) and Y = X 2 (quadratic dependency) one has
corr[X ,Y ] = 0 (homework)

other examples where corr[X ,Y ] = 0 but there is a cleare dependence between X
and Y

a more general measure of dependence is the mutual information
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Multivariate Gaussian (Normal) Distribution

X is a continuous RV with values x ∈ RD

X ∼ N (µ,Σ), i.e. X has a Multivariate Normal distribution (MVN) or
multivariate Gaussian

N (x|µ,Σ) ,
1

(2π)D/2|Σ|1/2
exp

[
− 1

2
(x− µ)TΣ−1(x− µ)

]
mean: E[x] = µ

mode: µ

covariance matrix: cov[x] = Σ ∈ RD×D where Σ = ΣT and Σ ≥ 0

precision matrix: Λ , Σ−1

spherical isotropic covariance with Σ = σ2ID
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Multivariate Gaussian (Normal) Distribution
Bivariate Normal
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Multivariate Student t Distribution

X is a continuous RV with values x ∈ RD

X ∼ T (µ,Σ, ν), i.e. X has a Multivariate Student t distribution

T (x|µ,Σ, ν) ,
Γ(ν/2 + D/2)

Γ(ν/2)

|Σ|−1/2

νD/2πD/2

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−( ν+D
2

)

mean: E[x] = µ

mode: µ

Σ = ΣT is now called the scale matrix

covariance matrix: cov[x] = ν
ν−2

Σ

N.B.: this distribution is similar to MVN but it’s more robust w.r.t outliers due to
its fatter tails (see the previous slides about univariate Student t distribution)
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Dirichlet Distribution

X is a continuous RV with values x ∈ SK

probability simplex SK , {x ∈ RK : 0 ≤ xi ≤ 1,
K∑
i=1

xi = 1}

the vector x = (x1, ..., xK ) can be used to represent a set of K probabilities

X ∼ Dir(α), i.e. X has a Dirichlet distribution

Dir(x|α) ,
1

B(α)

K∏
i=1

xαi−1
i I(x ∈ SK )

where α ∈ RK and B(α) is a generalization of the beta function to K variables2

B(α) = B(α1, ..., αK ) ,

∏K
i=1 Γ(αi )

Γ(α0)

α0 =
∑K

i=1 αi

E[xk ] = αk
α0

, mode[xk ] = αk−1
α0−K

, var[xk ] = αk (α0−αK )

α2
0(α0+1)

N.B.: this distribution is a multivariate generalization of the beta distribution

2see the slide about the gamma distribution for the definition of Γ(α)
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Credits

Kevin Murphy’s book

Luigi Freda (”La Sapienza” University) Lecture 3 October 19, 2016 46 / 46


	Common Continuous Distributions - Univariate
	Gaussian Distribution
	Degenerate PDFs
	Student's t Distribution
	Laplace Distribution
	Gamma Distribution
	Beta Distribution
	Pareto Distribution

	Joint Probability Distributions - Multivariate
	Joint Probability Distributions
	Joint CDF and PDF
	Marginal PDF
	Conditional PDF and Independence
	Covariance and Correlation
	Correlation and Independence
	Common Multivariate Distributions


