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Generative Classifiers vs Discriminative Classifiers

probabilistic classifier

we are given a dataset D = {(xi , yi )}Ni=1

the goal is to compute the class posterior p(y = c|x) which models the mapping
y = f (x)

generative classifiers

p(y = c|x) is computed starting from the class-conditional density p(x |y = c,θ)
and the class prior p(y = c|θ) given that

p(y = c|x ,θ) ∝ p(x |y = c,θ)p(y = c|θ) (= p(y = c, x |θ))

this is called a generative classifier since it specifies how to generate the feature
vector x for each class y = c (by using p(x |y = c,θ))

the model is usually fit by maximizing the joint log-likelihood, i.e. one computes
θ∗ = arg max

θ

∑
i log p(yi , xi |θ)

discriminative classifiers

the model p(y = c|x) is directly fit to the data

the model is usually fit by maximizing the conditional log-likelihood, i.e. one
computes θ∗ = arg max

θ

∑
i log p(yi |xi ,θ)
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Naive Bayes Classifiers
Basic Concepts

a Naive Bayes Classifier (NBC) uses a generative approach

let x = [x1, ..., xD ]T be our feature vector with D components1

let y ∈ {1, ...,C} where C is the number of classes

assumption: the D features are assumed to be conditionally independent given
the class label, i.e.

p(x |y = c,θ) =
D∏
j=1

p(xj |y = c, θjc)

this is the simplest approach to specify a class-conditional density

it is called ”naive” since we do not actually expect the features to be conditionally
independent, even conditional to the class label y = c

even if the naive assumption is not true, NBC often works well given that the
model is quite simple and depends on O(CD) parameters and hence is relatively
immune to overfitting

1one can have x ∈ RD or x ∈ {1, 2, ...,K}D or x ∈ {0, 1}D
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Naive Bayes Classifiers
Class-Conditional Distributions

the form of the class-conditional density depends on the type of each feature

if xj ∈ R we can use the Gaussian distribution

p(x |y = c,θ) =
D∏
j=1

N (xj |µjc , σ
2
jc)

where for each class c we specify the mean µjc of feature j and its variance σjc

if xj ∈ {0, 1} we can use the Bernoulli distribution

p(x |y = c,θ) =
D∏
j=1

Ber(xj |µjc)

where for each class c we specify the probability µjc = p(xj = 1|y = c), i.e. the
probability that feature j occurs

Luigi Freda (”La Sapienza” University) Lecture 4 October 6, 2017 7 / 46



Naive Bayes Classifiers
Class-Conditional Distributions

if xj ∈ {1, ...,K} we can use the categorical distribution

p(x |y = c,θ) =
D∏
j=1

Cat(xj |µjc)

where for each class c we specify the histogram

µjc = [p(xj = 1|y = c), ..., p(xj = K |y = c)]

other kind of features can be conceived and we can mix different kind of features
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Naive Bayes Classifiers
Likelihood

probability for single data case

p(xi , yi |θ) = p(yi |π)p(xi |yi ,θ) = (NBC assumption) = p(yi |π)
∏
j

p(xij |yi ,θj)

where θ is a compound vector parameter containing π and θj

since yi ∼ Cat(π)

p(yi |π) =
∏
c

πI(yi=c)
c

for each class c we allocate a specific set of parameters θjc

p(xij |yi ,θj) =
∏
c

p(xij |θjc)I(yi=c)

hence
p(xi , yi |θ) =

∏
c

πI(yi=c)
c

∏
j

∏
c

p(xij |θjc)I(yi=c)
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Naive Bayes Classifiers
Likelihood

the log-likelihood is given by

log p(D|θ) =
N∑
i=1

log p(xi , yi |θ) =
N∑
i=1

C∑
c=1

log πI(yi=c)
c +

N∑
i=1

D∑
j=1

C∑
c=1

log p(xij |θjc)I(yi=c)

=
C∑

c=1

Nc log πc +
D∑
j=1

C∑
c=1

∑
i :yi=c

log p(xij |θjc)

where Nc ,
∑

i I(yi = c) and we assumed as usual that the pairs (xi , yi ) are iid
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Naive Bayes Classifiers
MLE

the log-likelihood is

log p(D|θ) =
C∑

c=1

Nc log πc +
D∑
j=1

C∑
c=1

∑
i :yi=c

log p(xij |θjc)

here we have the sum of two terms, the first concerning π = [π1, ..., πC ] and the
second concerning DC set of parameters θjc

in order to compute the MLE we can optimize the two group of parameters π and
θjc separately
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Naive Bayes Classifiers
MLE

the log-likelihood is

log p(D|θ) =
C∑

c=1

Nc log πc +
D∑
j=1

C∑
c=1

∑
i :yi=c

log p(xij |θjc)

the first term concerns the labels yi ∼ Cat(π), recall how we computed the MLE
of the Dirichlet-multinomial model

the MLE can be computed by optimizing the Lagrangian

l(π, λ) =
∑
c

Nc log πc + λ

(
1−

∑
c

πc

)
where we enforce the constraint

∑
c πc = 1

we impose ∂l
∂πc

= 0, ∂l
∂λ

= 0 and we obtain the MLE estimation

π̂c =
Nc

N
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Naive Bayes Classifiers
MLE

the log-likelihood is

log p(D|θ) =
C∑

c=1

Nc log πc +
D∑
j=1

C∑
c=1

∑
i :yi=c

log p(xij |θjc)

as for the second term optimization, we assume the features xij are binary, i.e.
xij ∈ {0, 1}, and xij |y = c ∼ Ber(θjc), hence θjc = θjc ∈ [0, 1]

in this case, we could compute the MLE by using the analysis which was
performed with the beta-binomial model

doing the math again, we have to optimize the function

J =
D∑
j=1

C∑
c=1

∑
i :yi=c

log p(xij |θjc) =
D∑
j=1

C∑
c=1

∑
i :yi=c

(
I(xij = 1) log θjc+I(xij = 0) log(1−θjc)

)
=

=
D∑
j=1

C∑
c=1

Njc log θjc +
D∑
j=1

C∑
c=1

(Nc − Njc) log(1− θjc)

where Njc ,
∑

i I(xij = 1, yi = c) and Nc ,
∑

i I(yi = c)
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Naive Bayes Classifiers
MLE

we have to optimize the function

J =
D∑
j=1

C∑
c=1

Njc log θjc +
D∑
j=1

C∑
c=1

(Nc − Njc) log(1− θjc)

where Njc ,
∑

i I(xij = 1, yi = c) and Nc ,
∑

i I(yi = c)

by imposing
∂J

∂θjc
= 0 one obtains the MLE estimate

θ̂jc =
Njc

Nc
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Naive Bayes Classifiers
Model Fitting

algorithm: MLE fitting a naive Bayes classifier to binary features (i.e. xi ∈ {0, 1}D)

Nc = 0, Njc = 0 ;
for i = 1 : N do

c := yi ; // get the class label of the i-th sample

Nc := Nc + 1;
for j = 1 : D do

if xij = 1 then
Njc := Njc + 1

end

end

end

π̂c = Nc
N

, θ̂jc =
Njc

Nc
;

see the naiveBayesFit script for some Matlab code

the algorithm takes O(ND) time
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Naive Bayes Classifiers
Bayesian Reasoning

as we know the MLE estimates can overfit

recall the black swan paradox and the issue of using empirical
fractions Ni/N

a simple solution to overfitting is to be Bayesian
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The Beta-Binomial Model
Prior

for simplicity we use a factored prior

p(θ) = p(π)
D∏
j=1

C∏
c=1

p(θjc)

where θ is a compound vector parameter containing π, θjc

as for the prior of π we use
p(π) = Dir(π|α)

which is a conjugate prior w.r.t. the multinomial part

as for the prior of each θjc we use

p(θjc) = Beta(θjc |β0, β1)

which is a conjugate prior w.r.t. the binomial part

we can obtain a uniform prior by setting α = 1 and β0 = β1 = 1
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The Beta-Binomial Model
Posterior

factored likelihood

log p(D|θ) = log Cat(y |π) +
D∑
j=1

C∑
c=1

∑
i :yi=c

log Ber(xij |θjc)

factored prior

p(θ) = Dir(π|α)
D∏
j=1

C∏
c=1

Beta(θjc |β0, β1)

factored posterior

p(θ|D) = p(π|D)
D∏
j=1

C∏
c=1

p(θjc |D)

p(π|D) = Dir(π|N1 + α1, ...,NC + αC )

p(θjc |D) = Beta(θjc |Njc + β1, (Nc − Njc) + β0)

to compute the posterior we just updates the empirical counts of the likelihood
with the prior counts
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The Beta-Binomial Model
MAP

factored posterior

p(θ|D) = p(π|D)
D∏
j=1

C∏
c=1

p(θjc |D)

p(π|D) = Dir(π|N1 + α1, ...,NC + αC )

p(θjc |D) = Beta(θjc |Njc + β1, (Nc − Njc) + β0)

MAP estimate of π = [π1, ..., πC ]

π̂ = arg max
π

Dir(π|N1 + α1, ...,NC + αC ) =⇒ π̂c =
Nc + αc − 1

N + α0 − C

MAP estimate of θjc for j ∈ {1, ...,D}, c ∈ {1, ...,C}

θ̂jc = arg max
θjc

Beta(θjc |Njc + β1, (Nc − Njc) + β0) =⇒ θ̂jc =
Njc + β1 − 1

Nc + β1 + β0 − 2
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Naive Bayes Classifiers
MAP Model Fitting

algorithm: MAP fitting a naive Bayes classifier to binary features (i.e. xi ∈ {0, 1}D)

Nc = 0, Njc = 0 ;
for i = 1 : N do

c := yi ; // get the class label of the i-th sample

Nc := Nc + 1;
for j = 1 : D do

if xij = 1 then
Njc := Njc + 1

end

end

end

π̂c = Nc+αc−1
N+α0−C

, θ̂jc =
Njc+β1−1

Nc+β1+β0−2
;
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Naive Bayes Classifiers
Posterior Predictive

if we are given a new sample x the posterior predictive is

p(y = c|x ,D) ∝ p(x |y = c,D)p(y = c|D)

with a NBC the class conditional density can factorized as

p(x |y = c,D) =
D∏
j=1

p(xj |y = c,D)

(since features are assumed to be conditionally independent given the class label)

combining the two above equations returns

p(y = c|x ,D) ∝ p(y = c|D)
D∏
j=1

p(xj |y = c,D)
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Naive Bayes Classifiers
Posterior Predictive

we start from this factorization and we apply the Bayesian procedure

p(y = c|x ,D) ∝ p(y = c|D)
D∏
j=1

p(xj |y = c,D)

first step, we integrate out the unknown π on the first factor

p(y = c|D) =

∫
p(y = c,π|D)dπ =

∫
p(y = c|π,D)p(π|D)dπ =

(
π gives enough information to compute p(y = c)

)
=

∫
p(y = c|π)p(π|D)dπ

second step, we integrate out the unknowns θjc on each remaining factor

p(xj |y = c,D) =

∫
p(xj , θjc |y = c,D)dθjc =

∫
p(xj |θjc , y = c,D)p(θjc |y = c,D)dθjc =

(
the new x is independent from D

)
=

∫
p(xj |θjc , y = c)p(θjc |D)dθjc
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Naive Bayes Classifiers
Posterior Predictive

recollecting everything together returns

p(y = c|x ,D) ∝
[ ∫

p(y = c|π)p(π|D)dπ

] D∏
j=1

[ ∫
p(xj |θjc , y = c)p(θjc |D)dθjc

]
and plugging-in the model PDFs/PMFs we adopted

p(y = c|x ,D) ∝
[ ∫

Cat(y = c|π)Dir(π|N1 + α1, ...,NC + αC )dπ

]
×

D∏
j=1

[ ∫
Ber(xj |θjc , y = c)Beta(θjc |Njc + β1, (Nc − Njc) + β0)dθjc

]
=

the first part is a Dirichlet-multinomial model

the second part is a product of beta-binomial models
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Naive Bayes Classifiers
Posterior Predictive

doing the math again for the first part∫
Cat(y = c|π)Dir(π|N1 + α1, ...,NC + αC )dπ =∫

πc Dir(π|N1 + α1, ...,NC + αC )dπ = E[πc |D] =
Nc + αc

N + α0

where α0 =
∑

c αc

this is exactly how we computed the posterior mean for the Dirichlet-multinomial
model

πc = E[πc |D] =
Nc + αc

N + α0
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Naive Bayes Classifiers
Posterior Predictive

doing the math again for the second part∫
Ber(xj |θjc , y = c)Beta(θjc |Njc + β1, (Nc − Njc) + β0)dθjc =

=

∫
θ
I(xj=1)

jc (1− θjc)I(xj=0)Beta(θjc |Njc + β1, (Nc − Njc) + β0)dθjc =

= (θjc)I(xj=1)(1− θjc)I(xj=0)

where

θjc = E[θjc |D] =
Njc + β1

Nc + β0 + β1

in the above equations we first worked on xj = 1 and then on xj = 0

this is exactly how we computed the posterior mean for the beta-binomial model
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Naive Bayes Classifiers
Posterior Predictive

the final posterior predictive is

p(y = c|x ,D) ∝ πc

D∏
j=1

(θjc)I(xj=1)(1− θjc)I(xj=0)

with the posterior means

θjc = E[θjc |D] =
Njc + β1

Nc + β0 + β1

and

πc = E[πc |D] =
Nc + αc

N + α0
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Naive Bayes Classifiers
Plug-in Approximation

we can approximate the posterior with a single point, i.e. p(θ|D) ≈ δθ̂(θ) where θ̂
can be the MAP or the MLE

we obtain in this case a plug-in approximation

p(y = c|x ,D) ∝ π̂c

D∏
j=1

(θ̂jc)I(xj=1)(1− θ̂jc)I(xj=0)

the plug-in approximation is obviously more prone to overfitting
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Naive Bayes Classifiers
Log-Sum-Exp Trick

the posterior predictive has the following form

p(y = c|x) =
p(x |y = c)p(y = c)

p(x)
=

p(x |y = c)p(y = c)∑
c′ p(x |y = c ′)p(y = c ′)

p(x |y = c) is often a very small number, especially if x is a high-dimensional
vector, since we have to enforce

∑
x
′ p(x ′|y = c) = 1

this entails that a naive implementation of the posterior predictive can fail due to
numerical underflow

the obvious solution is to use logs

log p(y = c|x) = log p(x |y = c) + log p(y = c)− log p(x)

and if we define bc , log p(x |y = c) + log p(y = c), one has

log p(y = c|x) = bc − log

[∑
c′

ebc′
]
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Naive Bayes Classifiers
Log-Sum-Exp Trick

with bc , log p(x |y = c) + log p(y = c) we have

log p(y = c|x) = bc − log

[∑
c′

ebc′
]

now we have the problem that computing ebc′ can cause an overflow2

we can use the log-sum-exp trick in order to avoid this problem

log

[∑
c

ebc
]

= log

[(∑
c

ebc−B

)
eB
]

= log

[∑
c

ebc−B

]
+ B

where B , maxc bc

with this trick the biggest term ebc−B equals zero

2since bc′ can be a big number
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Naive Bayes Classifiers
Posterior Predictive Algorithm

the computed posterior predictive is

p(y = c|x ,D) ∝ πc

D∏
j=1

(θjc)I(xj=1)(1− θjc)I(xj=0)

if we apply the log we obtain

log p(y = c|x ,D) ∝ log πc +
D∑
j=1

I(xj = 1) log(θjc) + I(xj = 0) log(1− θjc)

the above log-posterior is the basis for the next algorithm
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Naive Bayes Classifiers
Posterior Predictive Algorithm

algorithm: predicting with a naive Bayes classifier for binary features (i.e. xi ∈ {0, 1}D)

for c = 1 : C do
Lc := log π̂c ;
for j = 1 : D do

if xj = 1 then

Lc := Lc + log θ̂jc
else

Lc := Lc + log(1− θ̂jc)
end

end
pc := exp(Lc − logsumexp(L1:C )); // compute p(y = c|x ,D)

end
ŷ := arg max

c
pc ;

the above algorithm computes ŷ = arg max
c

p(y = c|x ,D)

the used parameter estimate θ̂ can be obviously best replaced with the posterior
mean θ as shown in the computation of the full posterior predictive
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Feature Selection
By using Mutual Information

an NBC is commonly used to fit a joint distribution over potentially many features

the NBC fitting algorithm is O(ND) where N is the dataset size and D is the size
of x

problems: D can be very high and NBC may suffer from overfitting

a common approach to reduce these problems is to perform feature selection:

1 evaluate the relevance of each feature
2 hold only the K most relevant features (K is chosen based on some tradeoff

accuracy-complexity)
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Feature Selection
Mutual Information

correlation is a very limited measure of dependence; revise the slides about
correlation and independence (lecture 3 part 2)

a more general approach is to determine how similar is a joint distribution p(X ,Y )
to p(X )p(Y ) (recall the definition X ⊥ Y )

mutual information (MI)

I[X ;Y ] , KL[p(X ,Y )||p(X )p(Y )] =
∑
x

∑
y

p(x , y) log
p(x , y)

p(x)p(y)

one has I[X ;Y ] ≥ 0 with equality iff p(X ,Y ) = p(X )p(Y )
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Feature Selection
Mutual Information

we want to measure the relevance between feature Xj and the class label Y

I[Xj ;Y ] =
∑
xj

∑
y

p(xj , y) log
p(xj , y)

p(xj)p(y)

for an NBC classifier with binary features one has (homework ex 3.21)

Ij , I[Xj ;Y ] =
∑
c

[
θjcπc log

θjc
θj

+ (1− θjc)πc log
1− θjc
1− θc

]
where the following quantities are computed by the NBC fitting algorithm:
πc = p(y = c), θjc = p(xj = 1|y = c) and θj = p(xj = 1) =

∑
c πcθjc

the top K features with the highest Ij can then be selected and used
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Credits

Kevin Murphy’s book
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