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Intro

@ once we are given a Gaussian joint distribution p(xi,x2), it is useful
to be able to compute the marginals p(x;) and conditionals p(x1|x2)

@ in the following slides we see how to compute these probability
densities
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Marginals and Conditionals

(Marginals and conditionals for an MVN)
Suppose x = (x1,%2) ~ N (x|, 2), i.e. x is jointly Gaussian with parameters

5 Y X -1 A Ap
= 3= A==

[ } ’ [221 222} ’ |:A21 Ao
then the marginals are given by
p(x1) = N (x1|p1, E11)
p(x2) = N (x2|p2, 322)

and the posterior conditional is given by

p(xi[x2) = N (x1|p1)2, B1p2)
Hi2 = p1 + 2122;21(X2 — p2)
= p1 — A Ana(x2 — p2)
Sip =2 - B2 T = AL
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Marginals and Conditionals

from the previous theorem we have
p(x1) = N(x1|p1, E11)

p(x2) = N (x2|p2, X22)
p(x1|x2) = N (x1|p1)2, 12)

@ the marginal and the conditional distributions are Gaussian

@ for the marginals, we just extract the rows and columns corresponding to x; and x>
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Marginals and Conditionals

Example with a 2D Gaussian

@ consider a 2D example with

2
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ovX1.X] s the correlation coefficient

9102

where p =

@ the marginal p(x1) is 1D Gaussian, obtained by projecting the joint distribution
onto the xi line

p(x1) = N(xu|p1, o1)
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Marginals and Conditionals

Example with a 2D Gaussian

@ suppose we observe X» = x», the conditional p(xi|x2) is obtained by slicing
p(x1, x2) through the Xo = x> line

2
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plabe) = N(Xllm + P22 (4, — ), 0% — M)

03 03

o)
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o

@ Jeft: joint Gaussian distribution p(xi, x2) with a correlation coefficient of 0.8; we
plot the 95% contour and the principal axes.

@ center: the unconditional marginal p(x1)

@ right: the conditional p(xi|x2) = M (x1]0.8,0.36), obtained by slicing p(x1, x2) at
height x, =1
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Interpolation of Noise-free Data

@ suppose we want to estimate a 1D function y = f(t), defined on the interval
[0, T], starting from N observed points y; = f(t;)

@ we assume for now the data is no noise-free

@ as a matter of fact, we want to interpolate the data, i.e. fit a function that goes
exactly though the data

@ question: how does the function behave in between observed points?

the first thing is to assume that the unknown function is smooth
@ we'll encode the smoothness in a prior

50
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Interpolation of Noise-free Data

@ in order to encode the prior we start by discretizing the problem
@ we discretize the interval [0, T] in D equal subintervals such that

. T
@ we can encode the smoothness prior by assuming

je{l1,..,D}

1 .
)925()971 +)(j+1)—|—6j j€{2,..‘,D—1}

where ¢; is a Gaussian noise

@ we assume € = [e2, ..., ep—1] ~ N(0, +1) where the precision A controls the
smoothness degree

@ the above equation can be restated in vector form as
Lx=¢€

where

is a second order finite difference matrix
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Interpolation of Noise-free Data

@ given a vector x the degree of smoothness can be represented by the norm |||

@ a smoothness prior should give higher probabilities to vectors x which correspond
to smaller ||€||, hence

A
p(x) o exp(—EIILXIli)
where a factor A can be used to weigh the overall smoothness

@ the smoothness prior can be expressed by using a Gaussian distribution as

p(x) = N (x|px, B) = N(x]0, ALTL) ) o exp(—%lILXH%)
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Interpolation of Noise-free Data

@ smoothness prior
P(x) = N(xltx, ) = N(x|0, (ALTL) )
@ let’s assume that we have used A to scale L so that we can ignore it

@ note that A, = L"L € RP*P and, since L € R(P~2*P one has! rank(A,) = D —2

@ hence A, = LTL defines an improper prior known as intrinsic Gaussian random
field

@ however it's possible to show that if we observe N > 2 points, the posterior will be
proper

Irecall that rank(AB) = min(rank(A), rank(B))
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Interpolation of Noise-free Data

@ now suppose that in our D discretized intervals we have N noise-free observations
gathered in x, € R and we want to compute the remaining N — D function
values x; € RP™N

@ we know that
p(x1,%2) = N (x|thx, B) = N(x[0, (LTL) ™)

@ we can partition L = [Ly, L] where L; € REO=Dx(D=N) gnq L, ¢ R(O-IxN

@ one has

A—LTL— {Au Alz] _ {LI Lo Lz}

An Ax /L LL
@ by using theorem 1 one has

p(x1]x2) = N (x1|p1)2, Z12)
Hi2 = p1 — AﬁlAlz(X — w2) = —(L1TL1)71L1TL2X
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Interpolation of Noise-free Data

1=30 A=0p1

left: Gaussian with prior precision A = 30

right: prior with A = 0.01

@ the posterior mean p;» equals the observed data at the specified points and
smoothly interpolates in between

@ the plots show the 95% pointwise marginals credibility intervals p; + 2\/%

@ N.B.: the variance goes up as we move aways from the the data
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Linear Gaussian System

Problem and Assumptions

problem
@ suppose we have two variables x € RP* and y € RPr
@ y is a noisy observation of x

@ x is an hidden variable we want to estimate

assumptions
@ the prior is
p(x) = N (x|px, Z)
@ the likelihood is
p(y[x) = N(y|Ax + b, )

where A € RP»*Px and b € R?” are known

N.B.: the above model is equivalent to assume y = Ax + b 4 € where € is a noise
characterized by the Gaussian distribution A/(0, 3, )
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Linear Gaussian System

Theorem

(Bayes rule for linear Gaussian systems)
Given a linear Gaussian system, as the one described in the previous slide, the posterior

p(y|x) is given by
p(xly) = N(x|pxy, Euiy)
T, =3 +ATS A

tay = Sy [ATES Ny — b) + 37 ]
In addition the normalization constant p(y) is given by

p(y) = N(y|Apx + b, ), + AS,AT)
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@ Inferring an Unknown Scalar from Noisy Measurements
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Inferring an Unknown Scalar from Noisy Measurements

Problem

@ suppose we make /N noisy measurements y; € R of some underlying quantity
x €R,ie.
Yi=Xi + €
where ¢, ~ N(0,\, ') and \, = 1/0°
@ the likelihood is
plyilx) = N(yilx, A7)

@ we assume a Gaussian prior
p(x) = N(x|uo, Ao ")

@ given D = {y1,..., yn} we want then to compute the posterior p(x|D) by using a
Bayesian approach
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Inferring an Unknown Scalar from Noisy Measurements

Solution

@ in order to use the theorem 2, we can introduce a variable y £ D, ...,yN]T eR",
a matrix A = IE € RN and DINMED W

@ then we get the posterior

p(xly) = N (x|un, AyY)

AN = Ao + N)\y
_ Ay Z,-y; + Aofto _ NM\Y + Xopio _ N, 74 Ao
Hn v Na + X N +xo” | N, + rl®

wherey £ L3y
@ in this case the MLE estimate of x is exactly xuig = ¥ since

xmLe = argmax p(D|0) = argmax Hp(y,-|x) = argmax HN(y;|x, N =y

@ the posterior mean py is a convex combination of the MLE y and the prior mean
fo
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Inferring an Unknown Scalar from Noisy Measurements

@ posterior

p(xly) = N (x|un, Ay*)

AN = Mo + N)\y
My N
A V) WIS VE A V) WIS W

@ note that the posterior mean is written in terms of N,y

@ having N measurements each of precision A, is equivalent to having one
measurement y with a precision N, this means

p(X|y7 >‘,V) = p(X|}77 N7 )‘}/)

in other words (y, N, \,) is a sufficient statistics for the problem
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Inferring an Unknown Scalar from Noisy Measurements

Case with just a measurement

@ the procedure can be easily used for an online estimation
@ let To2 N\, X, 2\ and I 20,

@ if we have just a measurement, i.e. N =1, one has

p(xly) = N(x|p1, T1)
—1
2ox
):1:(i+71) =
z0 Zy|x ZO + Zy\x

Bo | Y o Tyix
H ' (zO ZyIX) Ho Yo+ Zy\x yZO + zyIX

where the posterior p1 can be rewritten as

0
= + — - -
= o+ (y uo)):0 .
):y\x
m=y—(y uo)):0 T

@ the third equation is called shrinkage: the data is adjusted towards the prior mean
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Inferring an Unknown Scalar from Noisy Measurements

prior variance = 1.00 prior variance = 5.00

m—prior —priOT
T =ik
= 1 pOSt J 087 u w1 post
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@ Inferring an Unknown Vector from Noisy Measurements
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Inferring an Unknown Vector from Noisy Measurements

Problem

@ suppose we make /N noisy measurements y; € RP of some vector x € R, i.e.
Yy, =X+ €

where €; ~ N (0,3,,,)
@ the likelihood is
p(yilx) = N(y;lx, Zyx)
where A=land b=20

@ we assume a Gaussian prior
p(x) = N (x|uo, %)

@ given D = {y;,...,yn} We want then to compute the posterior p(x|D) by using a
Bayesian approach
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Inferring an Unknown Vector from Noisy Measurements

Solution

@ in order to use the theorem 2, we can introduce a variable § £ [y,,...,yy] € R, a

matrix
A |

A 21 =
A |
and Xy, = diag(Z,x)
@ then we get the posterior
p(x(5) = N (xlun, =n)
Sy =S+ Ns)

ylx
i = (2, (NY) + o o)

wherey £ 15"y,
@ in this case the MLE estimate of x is exactly xpie =y

@ the expression of the posterior mean py is very similar to the scalar case
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@ Interpolating Noisy Measurements
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Interpolating Noisy Measurements

Problem

assume we have N noisy observations y; € R
each y; corresponds to a distinct linear combination of a vector x € R?
for each y; we have a noise ¢; ~ N (0, o)

we can model this setup as a linear Gaussian system
y=Ax+¢€
where y = [y1, .., yn]” €R, e =[e1,...,en]” €RY, e ~ N(0,X%,) and I, = 2l

@ the matrix A € R"*P is known and can be used for selecting out certain
components, for instance if N =2 and D =4

1000
A_[0100}

@ we again assume a smoothness prior
P(x) = N(x|ptx, ) = N (x]0, (ALTL) )

where A, = L"L defines an improper prior known as intrinsic Gaussian random
field
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Interpolating Noisy Measurements

Solution

@ linear Gaussian system
y=Ax+¢€

@ smoothness prior
P(x) = N(xlhx, ) = N(x]0, (ALTL) )

@ we can apply theorem 2 in order to compute the posterior p(y|x)
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Interpolating Noisy Measurements

Solution

=30

left: interpolation by using A = 30

A=0p1

strong prior(large \) = smooth estimate and low uncertainty

right: interpolation by using A = 0.01

weak prior(small A\) = wiggly estimate and high uncertainty
N.B.: the precision \ affects the posterior mean as well as the posterior variance
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Interpolating Noisy Measurements

Solution
@ a MAP solution can be found by maximizing the posterior, i.e.
Kmap = argmax log p(x|y) = argmax [Iog p(y|x) + log p(x)}

@ in the case A = |, we can equivalently solve the following optimization problem

Rmap = argmin o~ Z(X: vi)? +35 Z |:(XJ —x1)? + (g — Xj+1)2]
X

where we define xo = x1 and xp+1 = xp for simplicity of notation

@ the previous equation is a discrete approximation to the following problem
argmin = [ (F(t) — y(&)Pde + 2 [ F(t)dt
3 202 2

where f'(t) is the first time derivative of the function f

@ the first term measures the fit to the data and the second term penalizes function
that are too wiggly (Tikhonov regularization problem)
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@ Kevin Murphy's book
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