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Intro

once we are given a Gaussian joint distribution p(x1, x2), it is useful
to be able to compute the marginals p(x1) and conditionals p(x1|x2)
in the following slides we see how to compute these probability
densities

Luigi Freda (”La Sapienza” University) Lecture 5 December 20, 2016 4 / 33



Marginals and Conditionals

Theorem 1

(Marginals and conditionals for an MVN)
Suppose x = (x1, x2) ∼ N (x|µ,Σ), i.e. x is jointly Gaussian with parameters

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
then the marginals are given by

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)

and the posterior conditional is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

= µ1 −Λ−1
11 Λ12(x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11
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Marginals and Conditionals

from the previous theorem we have

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)

p(x1|x2) = N (x1|µ1|2,Σ1|2)

the marginal and the conditional distributions are Gaussian

for the marginals, we just extract the rows and columns corresponding to x1 and x2
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Marginals and Conditionals
Example with a 2D Gaussian

consider a 2D example with

µ =

[
µ1

µ2

]
, Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
where ρ = cov[X1,X2]

σ1σ2
is the correlation coefficient

the marginal p(x1) is 1D Gaussian, obtained by projecting the joint distribution
onto the x1 line

p(x1) = N (x1|µ1, σ1)
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Marginals and Conditionals
Example with a 2D Gaussian

suppose we observe X2 = x2, the conditional p(x1|x2) is obtained by slicing
p(x1, x2) through the X2 = x2 line

p(x1|x2) = N
(
x1
∣∣µ1 +

ρσ1σ2

σ2
2

(x2 − µ2), σ2
1 −

(ρσ1σ2)2

σ2
2

)

left: joint Gaussian distribution p(x1, x2) with a correlation coefficient of 0.8; we
plot the 95% contour and the principal axes.

center : the unconditional marginal p(x1)

right: the conditional p(x1|x2) = N (x1|0.8, 0.36), obtained by slicing p(x1, x2) at
height x2 = 1
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Interpolation of Noise-free Data

suppose we want to estimate a 1D function y = f (t), defined on the interval
[0,T ], starting from N observed points yi = f (ti )

we assume for now the data is no noise-free

as a matter of fact, we want to interpolate the data, i.e. fit a function that goes
exactly though the data

question: how does the function behave in between observed points?

the first thing is to assume that the unknown function is smooth

we’ll encode the smoothness in a prior
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Interpolation of Noise-free Data

in order to encode the prior we start by discretizing the problem

we discretize the interval [0,T ] in D equal subintervals such that

xj = f (tj), tj = j∆, ∆ =
T

D
, j ∈ {1, ...,D}

we can encode the smoothness prior by assuming

xj =
1

2
(xj−1 + xj+1) + εj j ∈ {2, ...,D − 1}

where εj is a Gaussian noise

we assume ε = [ε2, ..., εD−1] ∼ N (0, 1
λ

I) where the precision λ controls the
smoothness degree

the above equation can be restated in vector form as

Lx = ε

where

L =
1

2


−1 2 −1

−1 2 −1
. . .

−1 2 −1

 ∈ R(D−2)×D

is a second order finite difference matrix
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Interpolation of Noise-free Data

given a vector x the degree of smoothness can be represented by the norm ‖ε‖
a smoothness prior should give higher probabilities to vectors x which correspond
to smaller ‖ε‖, hence

p(x) ∝ exp(−λ
2
‖Lx‖22)

where a factor λ can be used to weigh the overall smoothness

the smoothness prior can be expressed by using a Gaussian distribution as

p(x) = N (x|µx ,Σx) = N (x|0, (λLTL)−1) ∝ exp(−λ
2
‖Lx‖22)
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Interpolation of Noise-free Data

smoothness prior

p(x) = N (x|µx ,Σx) = N (x|0, (λLTL)−1)

let’s assume that we have used λ to scale L so that we can ignore it

note that Λx = LTL ∈ RD×D and, since L ∈ R(D−2)×D , one has1 rank(Λx) = D− 2

hence Λx = LTL defines an improper prior known as intrinsic Gaussian random
field

however it’s possible to show that if we observe N ≥ 2 points, the posterior will be
proper

1recall that rank(AB) = min(rank(A), rank(B))
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Interpolation of Noise-free Data

now suppose that in our D discretized intervals we have N noise-free observations
gathered in x2 ∈ RN and we want to compute the remaining N − D function
values x1 ∈ RD−N

we know that
p(x1, x2) = N (x|µx ,Σx) = N (x|0, (LTL)−1)

we can partition L = [L1,L2] where L1 ∈ R(D−2)×(D−N) and L2 ∈ R(D−2)×N

one has

Λ = LTL =

[
Λ11 Λ12

Λ21 Λ22

]
=

[
LT
1 L1 LT

1 L2

LT
2 L1 LT

2 L2

]
by using theorem 1 one has

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 −Λ−1
11 Λ12(x− µ2) = −(LT

1 L1)−1LT
1 L2x
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Interpolation of Noise-free Data

left: Gaussian with prior precision λ = 30

right: prior with λ = 0.01

the posterior mean µ1|2 equals the observed data at the specified points and
smoothly interpolates in between

the plots show the 95% pointwise marginals credibility intervals µj ± 2
√

Σ1|2,jj

N.B.: the variance goes up as we move aways from the the data
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Linear Gaussian System
Problem and Assumptions

problem

suppose we have two variables x ∈ RDx and y ∈ RDy

y is a noisy observation of x

x is an hidden variable we want to estimate

assumptions

the prior is
p(x) = N (x|µx ,Σx)

the likelihood is
p(y|x) = N (y|Ax + b,Σy|x)

where A ∈ RDy×Dx and b ∈ RDy are known

N.B.: the above model is equivalent to assume y = Ax + b + ε where ε is a noise
characterized by the Gaussian distribution N (0,Σy|x)
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Linear Gaussian System
Theorem

Theorem 2

(Bayes rule for linear Gaussian systems)
Given a linear Gaussian system, as the one described in the previous slide, the posterior
p(y|x) is given by

p(x|y) = N (x|µx|y ,Σx|y )

Σ−1
x|y = Σ−1

x + ATΣ−1
y A

µx|y = Σx|y [ATΣ−1
y (y − b) + Σ−1

x µx ]

In addition the normalization constant p(y) is given by

p(y) = N (y|Aµx + b,Σy|x + AΣxAT )
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Inferring an Unknown Scalar from Noisy Measurements
Problem

suppose we make N noisy measurements yi ∈ R of some underlying quantity
x ∈ R, i.e.

yi = xi + εi

where εi ∼ N (0, λ−1
y ) and λy = 1/σ2

the likelihood is
p(yi |x) = N (yi |x , λ−1

y )

we assume a Gaussian prior

p(x) = N (x |µ0, λ
−1
0 )

given D = {y1, ..., yN} we want then to compute the posterior p(x |D) by using a
Bayesian approach
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Inferring an Unknown Scalar from Noisy Measurements
Solution

in order to use the theorem 2, we can introduce a variable y , [y1, ..., yN ]T ∈ RN ,
a matrix A = 1T

N ∈ R1×N and Σy|x = λy I

then we get the posterior

p(x |y) = N (x |µN , λ
−1
N )

λN = λ0 + Nλy

µN =
λy

∑
i yi + λ0µ0

λN
=

Nλyy + λ0µ0

Nλy + λ0
=

Nλy

Nλy + λ0
y +

λ0

Nλy + λ0
µ0

where y , 1
N

∑
i yi

in this case the MLE estimate of x is exactly xMLE = y since

xMLE = argmax
x

p(D|θ) = argmax
x

∏
i

p(yi |x) = argmax
x

∏
i

N (yi |x , λ−1
y ) = y

the posterior mean µN is a convex combination of the MLE y and the prior mean
µ0
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Inferring an Unknown Scalar from Noisy Measurements

posterior

p(x |y) = N (x |µN , λ
−1
N )

λN = λ0 + Nλy

µN =
Nλy

Nλy + λ0
y +

λ0

Nλy + λ0
µ0

note that the posterior mean is written in terms of Nλyy

having N measurements each of precision λy is equivalent to having one
measurement y with a precision Nλy , this means

p(x |y, λy ) = p(x |y ,N, λy )

in other words (y ,N, λy ) is a sufficient statistics for the problem
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Inferring an Unknown Scalar from Noisy Measurements
Case with just a measurement

the procedure can be easily used for an online estimation

let Σ0 , λ−1
0 , Σy|x , λ−1

y and Σi , λ−1
i ,

if we have just a measurement, i.e. N = 1, one has

p(x |y) = N (x |µ1,Σ1)

Σ1 =

(
1

Σ0
+

1

Σy|x

)−1

=
Σ0Σy|

Σ0 + Σy|x

µ1 = Σ1

(
µ0

Σ0
+

y

Σy|x

)
= µ0

Σ0

Σ0 + Σy|x
+ y

Σy|x

Σ0 + Σy|x

where the posterior µ1 can be rewritten as

µ1 = µ0 + (y − µ0)
Σ0

Σ0 + Σy|x

µ1 = y − (y − µ0)
Σy|x

Σ0 + Σy|x

the third equation is called shrinkage: the data is adjusted towards the prior mean
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Inferring an Unknown Scalar from Noisy Measurements
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Inferring an Unknown Vector from Noisy Measurements
Problem

suppose we make N noisy measurements yi ∈ RD of some vector x ∈ RD , i.e.

yi = xi + εi

where εi ∼ N (0,Σy|x)

the likelihood is
p(yi |x) = N (yi |x,Σy|x)

where A = I and b = 0

we assume a Gaussian prior

p(x) = N (x|µ0,Σ0)

given D = {y1, ..., yN} we want then to compute the posterior p(x|D) by using a
Bayesian approach
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Inferring an Unknown Vector from Noisy Measurements
Solution

in order to use the theorem 2, we can introduce a variable ỹ , [y1, ..., yN ] ∈ RN , a
matrix

Ã ,

A
...
A

 =

I
...
I


and Σỹ|x = diag(Σy|x)

then we get the posterior

p(x|ỹ) = N (x|µN ,ΣN)

Σ−1
N = Σ−1

0 + NΣ−1
y|x

µN = ΣN(Σ−1
y|x(Ny) + Σ−1

0 µ0)

where y , 1
N

∑
i yi

in this case the MLE estimate of x is exactly xMLE = y

the expression of the posterior mean µN is very similar to the scalar case
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Interpolating Noisy Measurements
Problem

assume we have N noisy observations yi ∈ R
each yi corresponds to a distinct linear combination of a vector x ∈ RD

for each yi we have a noise εi ∼ N (0, σ2)

we can model this setup as a linear Gaussian system

y = Ax + ε

where y = [y1, ..., yN ]T ∈ RN , ε = [ε1, ..., εN ]T ∈ RN , ε ∼ N (0,Σy ) and Σy = σ2I

the matrix A ∈ RN×D is known and can be used for selecting out certain
components, for instance if N = 2 and D = 4

A =

[
1 0 0 0
0 1 0 0

]
we again assume a smoothness prior

p(x) = N (x|µx ,Σx) = N (x|0, (λLTL)−1)

where Λx = LTL defines an improper prior known as intrinsic Gaussian random
field
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Interpolating Noisy Measurements
Solution

linear Gaussian system
y = Ax + ε

smoothness prior

p(x) = N (x|µx ,Σx) = N (x|0, (λLTL)−1)

we can apply theorem 2 in order to compute the posterior p(y|x)
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Interpolating Noisy Measurements
Solution

left: interpolation by using λ = 30

strong prior(large λ) =⇒ smooth estimate and low uncertainty

right: interpolation by using λ = 0.01

weak prior(small λ) =⇒ wiggly estimate and high uncertainty

N.B.: the precision λ affects the posterior mean as well as the posterior variance
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Interpolating Noisy Measurements
Solution

a MAP solution can be found by maximizing the posterior, i.e.

x̂MAP = argmax
x

log p(x|y) = argmax
x

[
log p(y|x) + log p(x)

]
in the case A = I, we can equivalently solve the following optimization problem

x̂MAP = argmin
x

1

2σ2

N∑
i=1

(xi − yi )
2 +

λ

2

D∑
i=1

[
(xj − xj−1)2 + (xj − xj+1)2

]
where we define x0 = x1 and xD+1 = xD for simplicity of notation

the previous equation is a discrete approximation to the following problem

argmin
f

1

2σ2

∫
(f (t)− y(t))2dt +

λ

2

∫
f ′(t)dt

where f ′(t) is the first time derivative of the function f

the first term measures the fit to the data and the second term penalizes function
that are too wiggly (Tikhonov regularization problem)
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Credits

Kevin Murphy’s book
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