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Eigenvalues

given a matrix A ∈ Cn×n

a nonzero vector v ∈ Cn is said to be its (right) eigenvector if

Av = λv

for some scalar λ ∈ C; λ is called an eigenvalue of A

the set of all eigenvalues of A is called its spectrum and it’s denoted by σ(A)

the Matlab command

[ V,D]= e ig (A)

produces a diagonal matrix D of eigenvalues and a matrix V such that

AV = VD with D = diag(λi )

if A is diagonalizable then V is full-rank (i.e. rank(V ) = n) and the columns of V
correspond to n linearly independent eigenvectors, i.e. V = {v1, ..., vn}; in this case
one has

A = VDV−1 =
n∑

i=1

λiviv
T
i

if Ã = TAT−1, where T is a nonsingular matrix, then Ã and A are called similar
matrices; at the previous point, A and D are similar matrices
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Eigenvalues
Real Matrix

given a real matrix A ∈ Rn×n

all its eigenvalues σ(A) are the roots of the characteristic polynomial equation

det(λI− A) = 0

given that A is a real matrix, if λ∗ ∈ C is an eigenvalue then its conjugate λ∗ ∈ C
is also an eigenvalue, i.e., σ(A) = σ(A)

det(λ∗I− A) = 0 =⇒ det(λ∗I− A) = det(λ∗I− A) = det(λ∗I− A) = 0

σ(A) = σ(AT ) since

det(λI− A) = det((λI− A)T ) = det(λI− AT )

if Ã = TAT−1, where T is a nonsingular matrix, then σ(Ã) = σ(A) since

det(λI− Ã) = det(λTT−1 − TAT−1) = det(T(λI− A)T−1) =

= det(T) det(λI− A) det(T−1) = det(λI− A)
(

det I = det(T−1) detT = 1
)
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Eigenvalues
Real Matrix

given a real matrix A ∈ Rn×n

eigenvectors of A associated to different eigenvalues are linearly independent

Avi = λivi , λ1 6= λ2, v1 6= v2

α1v1 + α2v2 = 0 =⇒ A(α1v1 + α2v2) = 0 =⇒ α1λ1v1 + α2λ2v2 = 0

since λ1(α1v1 + α2v2) = 0 =⇒ α2(λ2 − λ1)v2 = 0 =⇒ α2 = 0 =⇒ α1 = 0

if |σ(A)| = n, i.e. σ(A) = {λ1, λ2, ..., λn} with λi 6= λj for i 6= j , then A is
diagonalizable
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Eigenvalues
Real Matrix

given a real matrix A ∈ Rn×n

in general σ(A) = {λ1, ..., λm} with m ≤ n and λi 6= λj for i 6= j , and one has

det(λI− A) = (λ− λ1)µa(λ1)(λ− λ2)µa(λ2)...(λ− λm)µa(λm)
m∑
i=1

µa(λi ) = n

where µa(λi ) is the algebraic multiplicity of λi

in the general case one can always find the Jordan canonical form

A = VJV−1 J =


J1

J2
. . .

Jp

 Ji =


λi 1

λi

. . .

. . . 1
λi


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Eigenvalues
Real Matrix

given a real matrix A ∈ Rn×n

let E(λi ) , ker(A− λi I) = {v ∈ Rn : (A− λi I)v = 0} be the eigenspace of λi

let µg (λi ) , dim(E(λi )) be the geometric multiplicity of λi (µg (λi ) ≤ µa(λi ))

if E(λi ) = span{vi1, ..., viµi }, with µi , µg (λi ), then

AVi = ViDi with Vi = [vi1, ..., viµi ] ∈ Rn×µi and Di = λi Iµi

if µg (λi ) = µa(λi ) for each i ∈ {1, ...,m} then

Rn = E(λ1)⊕ ...⊕ E(λm)
n∑

i=1

µg (λi ) = n

and A is diagonalizable
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Eigenvalues
Real Symmetric Matrix

given a real symmetric matrix S ∈ Rnxn (i.e. S = ST )

all eigenvalues of S are real, i.e. σ(S) ⊂ R
eigenvectors v1, v2 of S associated to different eigenvalues are linearly
independent and orthogonal

Svi = λivi , λ1 6= λ2, v1 6= v2, vT2 (Sv1 − λ1v1) = 0

=⇒ (Sv2)Tv1 − λ1v
T
2 v1 = 0 =⇒ vT2 v1(λ2 − λ1) = 0 =⇒ vT2 v1 = 0

S is diagonalizable and one can find an orthonormal basis V such that VT = V−1

S = VDVT =
n∑

i=1

λiviv
T
i

if S > 0 (S ≥ 0) then λi > 0 (λi ≥ 0) for i ∈ {1, ...,m}

N.B.: the above results can be applied for instance to covariance matrices Σ which are
symmetric and positive definite
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Singular Value Decomposition

idea: the singular values generalize the notion of eigenvalues to any kind of matrix

given a matrix X ∈ RN×D

this can be decomposed as follows

X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
r∑

i=1

σiuiv
T
i

U ∈ RN×N is orthonormal, UTU = UUT = IN

V ∈ RD×D is orthonormal, VTV = VVT = ID

σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0 are the singular values, r = min(N,D) and S ∈ RN×D

S =


σ1

. . .

σD

0N−D

 if N > D or S =

 σ1

. . . 0D−N

σN

 if N ≤ D
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Singular Value Decomposition
Connection with Eigenvalues

given a matrix X ∈ RN×D

one has X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
∑r

i=1 σiuiv
T
i where r = min(N,D)

U ∈ RN×N is orthonormal, UTU = UUT = IN

V ∈ RD×D is orthonormal, VTV = VVT = ID

S ∈ RN×D contains the singular values σi on the main diagonal and 0s elsewhere

we have
XTX = (VSTUT )(USVT ) = VSTSVT = VDVT

where D , STS is a diagonal matrix containing the squared singular values σ2
i

(and possibly some additional zeros) on the main diagonal and 0s elsewhere

since (XTX)V = VD, then V contains the eigenvectors of XTX

the eigenvalues of XTX are the squared singular values σ2
i , contained in D

the columns of V are called the right singular vectors of X
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Singular Value Decomposition
Connection with Eigenvalues

given a matrix X ∈ RN×D

one has X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
∑r

i=1 σiuiv
T
i where r = min(N,D)

U ∈ RN×N is orthonormal, UTU = UUT = IN

V ∈ RD×D is orthonormal, VTV = VVT = ID

S ∈ RN×D contains the singular values σi on the main diagonal and 0s elsewhere

we have
XXT = (USVT )(VSTUT ) = USSTUT = UD̂UT

where D̂ , SST is a diagonal matrix containing the squared singular values σ2
i

(and possibly some additional zeros) on the main diagonal and 0s elsewhere

since (XXT )U = UD̂, then U contains the eigenvectors of XXT

the eigenvalues of XXT are the squared singular values σ2
i , contained in D̂

the columns of U are called the left singular vectors of X
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Singular Value Decomposition

given a matrix X ∈ RN×D with N > D

this can be decomposed as follows

X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
D∑
i=1

σiuiv
T
i

S =


σ1

. . .

σD

0N−D


the last N − D columns of U are irrelevant, since they will be multiplied by zero
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Singular Value Decomposition

given a matrix X ∈ RN×D with N > D

this can be decomposed as X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
∑D

i=1 σiuiv
T
i

since the last N −D columns of U are irrelevant, we can directly neglect them and
consider the economy sized SVD

X︸︷︷︸
N×D

= Û︸︷︷︸
N×D

Ŝ︸︷︷︸
D×D

VT︸︷︷︸
D×D

=
D∑
i=1

σiuiv
T
i

where Û
T
Û = ID , VTV = VVT = ID and Ŝ = diag(σ1, ..., σD)
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Singular Value Decomposition

given a matrix X ∈ RN×D with N > D

this can be decomposed as X︸︷︷︸
N×D

= U︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

=
∑D

i=1 σiuiv
T
i

a rank L approximation of X considers only the first L < D columns of U and the
first L singular values

we can then consider the truncated SVD

XL︸︷︷︸
N×D

= UL︸︷︷︸
N×L

SL︸︷︷︸
L×L

VT
L︸︷︷︸

D×L

=
L∑

i=1

σiuiv
T
i

where UT
L UL = IL, VT

L VL = ID and SL = diag(σ1, ..., σL)
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Singular Value Decomposition

given a matrix X ∈ RN×D with N > D

it is possible to show that XL = ULSLV
T
L is the best rank L approximation matrix

which solve

XL = argmin
X̂

‖X− X̂‖F with the constraint rank(X̂) = L

where ‖A‖F denotes the Frobenious norm

‖A‖F =

( m∑
i=1

n∑
j=1

a2ij

)1/2

=
(
trace(ATA)

)1/2
by replacing X̂ = XL one obtains

‖X− XL‖F = ‖U(S−
[

SL

0

]
)VT‖F = ‖S−

[
SL

0

]
‖F =

r∑
i=L+1

σi
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Discovering Latent Factors
An example

dimensionality reduction: it is often useful to reduce the dimensionality by
projecting the data to a lower dimensional subspace which captures the “essence”
of the data

for example in the above plot:

the 2d approximation is quite good, most points lie close to this subspace
projecting points onto the red line 1d approx is a rather poor approximation
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Discovering Latent Factors
Motivations

although data may appear high dimensional, there may only be a small number of
degrees of variability, corresponding to latent factors

low dimensional representations, when used as input to statistical models, often
result in better predictive accuracy (focusing on the “essence”)

low dimensional representations are useful for enabling fast nearest neighbor
searches

two dimensional projections are very useful for visualizing high dimensional data
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Principal Component Analysis
PCA

the most common approach to dimensionality reduction is called Principal
Components Analysis or PCA

given xi ∈ RD , we compute an approximation x̂i = Wzi with

zi ∈ RL where L < D (dimensionality reduction)
W ∈ RD×L and WTW = I (orthogonal W)

so as to minimize the reconstruction error

J(W,Z) =
1

N

N∑
i=1

‖xi − x̂i‖2 =
1

N

N∑
i=1

‖xi −Wzi‖2

since WTW = I one has ‖x‖2 = (xTx)1/2 = (zTWTWz)1/2 = (zT z)1/2 = ‖z‖2
in 3D or 2D W can represent part of a rotation matrix

this can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y = x, but not the
low-dimensional “cause” z
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Principal Component Analysis
PCA

the objective function (reconstruction error)

J(W,Z) =
1

N

N∑
i=1

‖xi − x̂i‖2 =
1

N

N∑
i=1

‖xi −Wzi‖2

is equivalent to
J(W,Z) = ‖XT −WZT‖2F

where ‖A‖F denotes the Frobenious norm

‖A‖F =

( m∑
i=1

n∑
j=1

a2ij

)1/2

=
(
trace(ATA)

)1/2
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Principal Component Analysis
PCA

we have to minimize the objective function

J(W,Z) =
1

N

N∑
i=1

‖xi − x̂i‖2 =
1

N

N∑
i=1

‖xi −Wzi‖2

or equivalently
J(W,Z) = ‖XT −WZT‖2F

subject to W ∈ RD×L and WTW = I

it is possible to prove that the optimal solution is obtained by setting

Ŵ = VL

Ẑ = XW (zi = Ŵ
T
xi = VT

L xi )

where XL = ULSLV
T
L is the rank L truncated SVD of X

we have XTX = VS2VT hence (XTX)VL = VLS
2
L since V = [VL|∗]

VL contains the L eigenvectors (principal directions) with the largest eigenvalues
of the empirical covariance matrix Σ = 1

N
XTX = 1

N

∑N
i=1 xix

T
i

zi = VT
L xi is the orthogonal projection of xi on the eigenvectors in VL
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Principal Component Analysis
PCA

by replacing Z = XW in the objective function and recalling that WTW = I

J(Z) = ‖XT −WZT‖2F = trace

(
(XT −WZT )T (XT −WZT )

)
=

= trace(XXT − XWZT − ZWTXT + ZZT ) = trace(XTX)− trace(WTXTXW) =

= trace(XTX)− trace(ZTZ) = trace(NΣX )− trace(NΣZ )

where we used the following facts: trace(AB) = trace(BA), trace(AT ) = trace(A)

minimizing the reconstruction error is equivalent to maximizing the variance of
the projected data zi = Wxi
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Principal Component Analysis
PCA

the principal directions are the ones along which the data shows maximal
variance

this means that PCA can be ”misled” by directions in which the variance is high
merely because of the measurement scale

in the figure below, the vertical axis (weight) uses a large range than the horizontal
axis (height), resulting in a line that looks somewhat “unnatural”

it is therefore standard practice to standardize the data first

xij →
(xij − µj)

σj

where µj = 1
N

∑N
i=1 xij and σ2

j = 1
N−1

∑N
i=1(xij − µj)

2
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Principal Component Analysis
PCA

left: the mean and the first three PC basis vectors (eigendigits) based on 25
images of the digit 3 (from the MNIST dataset)

right: reconstruction of an image based on 2, 10, 100 and all the basis vectors
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Principal Component Analysis
PCA

low rank approximations to an image

top left: the original image is of size 200 × 320, so has rank 200

subsequent images have ranks 2, 5, and 20.
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Credits

Kevin Murphy’s book
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