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Eigenvalues

given a matrix A € C"™*"
@ a nonzero vector v € C" is said to be its (right) eigenvector if
Av = \v
for some scalar A € C; X is called an eigenvalue of A

@ the set of all eigenvalues of A is called its spectrum and it's denoted by o(A)
@ the Matlab command

[V.D]= eig(A)
produces a diagonal matrix D of eigenvalues and a matrix V such that
AV =VD with D = diag(\;)

@ if A is diagonalizable then V is full-rank (i.e. rank(V) = n) and the columns of V
correspond to n linearly independent eigenvectors, i.e. V = {v1,...,v,}; in this case
one has

A=VDV ' => Ny
i=1

e ifA= TAT !, where T is a nonsingular matrix, then A and A are called similar
matrices; at the previous point, A and D are similar matrices
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Eigenvalues

Real Matrix

given a real matrix A € R"*"
@ all its eigenvalues o(A) are the roots of the characteristic polynomial equation
det(Al — A) =0

@ given that A is a real matrix, if \* € C is an eigenvalue then its conjugate \* € C
is also an eigenvalue, i.e., o(A) = 7(A)

det(A\*'l = A) =0 = det(\*l — A) = det(A\*1 — A) = det(A*] — A) =0
@ o(A) = (A7) since
det(AMl — A) = det((AMl — A)7) = det(Al — AT)
@ if A=TAT™ !, where T is a nonsingular matrix, then o(A) = o(A) since
det(Al — A) = det(ATT ' — TAT ') = det(T(M — A)T ) =

= det(T) det(Al — A) det(T ') = det(Al — A) (detl = det(T ')det T = 1)
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Eigenvalues

Real Matrix

given a real matrix A ¢ R"*"
@ eigenvectors of A associated to different eigenvalues are linearly independent
Avi = \ivi, A1 # X, viFvp
avi +avo =0 = A(aivi + aov2) =0 = a1Aivi + axdova =0
since Ai(aivi + aov2) =0 = (M2 —M)vo=0 = =0 = a1 =0

@ if |o(A)| = n, ie. o(A) = {1, A2, ..., A\n} with A; # \j for i # j, then A is
diagonalizable
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Eigenvalues

Real Matrix

given a real matrix A € R"*"

@ in general o(A) = {1, ..., Am} with m < n and \; # A; for i # j, and one has
det(Al — A) = (A — A )" D\ — Ag)a2) (X — ), )Herm) > pa(N)=n

where p,(A;) is the algebraic multiplicity of A;
@ in the general case one can always find the Jordan canonical form
A A1

Jo _
A=VJV! J= ) Ji= A
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Eigenvalues

Real Matrix

given a real matrix A € R"*"
@ let E(\/) = ker(A — \il) = {v € R": (A — \l)v = 0} be the eigenspace of )\,
@ let pg(Ni) 2 dim(E()\)) be the geometric multiplicity of \i  (ug(\i) < pa(Ni))
@ if E()\,) = span{v,-l, "'7"/#[}' with i £ ug()\,‘), then

AV; = V,D; with V; = [V,'17 ...,V,'MI.] S R"*Hi and D; = A,’lm
@ if pg(Ai) = pa(Ai) for each i € {1,..., m} then

R" = E(Al)@@E(Am) i,ug(/\;) =n

and A is diagonalizable
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Eigenvalues

Real Symmetric Matrix

given a real symmetric matrix S € R™ (i.e. S=S")

@ all eigenvalues of S are real, i.e. o(S) C R

@ eigenvectors v, v» of S associated to different eigenvalues are linearly
independent and orthogonal

Svi = Aivi, A1 # X, vi# vy, vy (Svi — Av1) =0
= (Sv2)'vi—Avavi=0 = vyvi(ha— A1) =0 = vjv; =0
@ S is diagonalizable and one can find an orthonormal basis V such that V7 = V~!

S=VDV' => \vyv/
i=1

@ ifS>0(S>0)then \; >0 (X >0) forie{l,..,m}

N.B.: the above results can be applied for instance to covariance matrices 3 which are
symmetric and positive definite
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Singular Value Decomposition

idea: the singular values generalize the notion of eigenvalues to any kind of matrix

given a matrix X € RV*P

@ this can be decomposed as follows

X = U o]
NS v\/v Z R
NxD  NxNNxDDxD =1
@ U c RN s orthonormal, UTU =UUT =
@ V € RP*P s orthonormal, VIV=VV' =1Ip
@ 01 > 02 > ... > 0, > 0 are the singular values, r = min(N, D) and S € RV*P

o1
o1

S= ifN>D or S= 0 if N < D
oD . D—N
On-p N

December 13, 2016 12 /31

Lecture 8

Luigi Freda ("La Sapienza” University)



Outline

@ Singular Value Decomposition

@ Connection with Eigenvalues

Luigi Freda ("La Sapienza” University) Lecture 8 December 13, 2016 13 /31



Singular Value Decomposition

Connection with Eigenvalues

given a matrix X € RV*P

@ onehas X = U S V' =Y""_, oiuiv] where r = min(N, D)
NxD NxN NxD DxD

U € RV*N is orthonormal, UTU =UU" = Iy

V € RP*P s orthonormal, VIV =VV' =1,

S € R"*P contains the singular values ¢; on the main diagonal and Os elsewhere

@ we have
X"X = (vS"U")(usv") =vs’sv’ =vDVv’

where D 2 S7S is a diagonal matrix containing the squared singular values o?
(and possibly some additional zeros) on the main diagonal and Os elsewhere

@ since (X"X)V = VD, then V contains the eigenvectors of X7 X
@ the eigenvalues of X7 X are the squared singular values o2, contained in D

@ the columns of V are called the right singular vectors of X
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Singular Value Decomposition

Connection with Eigenvalues

given a matrix X € RV*P

@ onehas X = U S V' =Y""_, oiuiv] where r = min(N, D)
NxD NxN NxD DxD

U € RV*N is orthonormal, UTU =UU" = Iy

V € RP*P s orthonormal, VIV =VV' =1,

S € R"*P contains the singular values ¢; on the main diagonal and Os elsewhere

@ we have .
XX" = (usv')(vs'u’)=uss’u’ =ubu’
where D £ SS7 is a diagonal matrix containing the squared singular values o?
(and possibly some additional zeros) on the main diagonal and Os elsewhere
@ since (XXT)U = UD, then U contains the eigenvectors of XX
@ the eigenvalues of XX are the squared singular values o2, contained in b

@ the columns of U are called the left singular vectors of X
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Singular Value Decomposition

given a matrix X € R¥*? with N > D
@ this can be decomposed as follows

D
X =U s Vv = E o]
N 2
NxD  NxNNxDDxD i=1

oD
- Ovp
@ the last N — D columns of U are irrelevant, since they will be multiplied by zero

D D N-D D D
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Singular Value Decomposition

given a matrix X € R¥*? with N > D

@ this can be decomposedas X = U S v’ = E,-D::l o]
NxD NxN NxD DxD
@ since the last N — D columns of U are irrelevant, we can directly neglect them and

consider the economy sized SVD

D
X = 0 g VT IZO','U,‘V,-
N 4
NxD NxDDxDDxD =1
e T T & .
where U U=1p, V'V =VV' =Ip and S = diag(oy, ..., 0p)
D D N-D D D
1 . D
N = .
X = U S v’
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Singular Value Decomposition

given a matrix X € R¥*? with N > D
@ this can be decomposedas X = U S V' = Z,-D,l o]
O~ =
NxD NxN NxD DxD
@ a rank L approximation of X considers only the first L < D columns of U and the
first L singular values

@ we can then consider the truncated SVD

T T
XL =U. S VvV, :ZUIUIVI
~ N~
NxD NxL LxL DxL -

where U/ U, =1, V[V, = Ip and S, = diag(o1, ..., 01)
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Singular Value Decomposition

given a matrix X € R¥*? with N > D

@ it is possible to show that X; = U;S;V/ is the best rank L approximation matrix
which solve

X, = argmin||X — X||r with the constraint rank(X) = L
X

where |A||r denotes the Frobenious norm

IAlF = (iia?j>l/2 = (trace(ATA))l/2

i=1 j=1

@ by replacing X = X, one obtains

x=xale = jus - [ % g pvrie=is= % Jie= >0 s

i=L+1
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Discovering Latent Factors

An example

@ dimensionality reduction: it is often useful to reduce the dimensionality by
projecting the data to a lower dimensional subspace which captures the “essence”
of the data

@ for example in the above plot:

@ the 2d approximation is quite good, most points lie close to this subspace
@ projecting points onto the red line 1d approx is a rather poor approximation
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Discovering Latent Factors

Motivations

@ although data may appear high dimensional, there may only be a small number of
degrees of variability, corresponding to latent factors

@ low dimensional representations, when used as input to statistical models, often
result in better predictive accuracy (focusing on the “essence”)

@ low dimensional representations are useful for enabling fast nearest neighbor
searches

@ two dimensional projections are very useful for visualizing high dimensional data
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Principal Component Analysis

PCA

@ the most common approach to dimensionality reduction is called Principal
Components Analysis or PCA

@ given x; € RP, we compute an approximation &; = Wz; with

o z; € R where L < D (dimensionality reduction)
o W c RP*! and WTW = I (orthogonal W)

so as to minimize the reconstruction error

N N
1 N 1
J(W,Z) = NZHX; — %7 = NZHX,- — Wz;|?
i=1 i=1

@ since WTW =1 one has ||x]2 = (x"x)¥/2 = (zTWTW2z)'/2 = (z272)"/2 = ||z|)
@ in 3D or 2D W can represent part of a rotation matrix

@ this can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y = x, but not the
low-dimensional “cause” z
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Principal Component Analysis

PCA

@ the objective function (reconstruction error)

N N
JW,Z) = 53 k= P = =S xi — W
N N
i=1 i=1

is equivalent to
JW,Z) = X" —wz'|z

where |A||r denotes the Frobenious norm

1AllF = <iia?j>l/2 = (trace(ATA))"/?

i=1 j=1
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Principal Component Analysis

PCA

@ we have to minimize the objective function

N N
1 . 1
JW,Z) = 23— &l = Dl — Wil
i=1 i=1
or equivalently
JW,z) = X7 — Wz |}

subject to W € RP*t and WTW = I

@ it is possible to prove that the optimal solution is obtained by setting
W=v,

Z = xw (i =W'x = V]x)
where X; = U;S;V/ is the rank L truncated SVD of X

@ we have X'X =VS?V" hence (X"X)V,=V;S? since V =[V|]
@ V, contains the L eigenvectors (principal directions) with the largest eigenvalues
of the empirical covariance matrix £ = 2X"X = L SN ;x|

@ z; = V] x; is the orthogonal projection of x; on the eigenvectors in V
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Principal Component Analysis

PCA

@ by replacing Z = XW in the objective function and recalling that WW = |
J(Z)=||XT —WZ" ||} = trace ((xT —wz)"(x" - WZT)> =

= trace(XX" — XWZ" — ZW'X" +ZZ") = trace(X" X) — trace(W' X" XW) =
= trace(X " X) — trace(Z' Z) = trace(NXx) — trace(NX7)
where we used the following facts: trace(AB) = trace(BA), trace(A”) = trace(A)

@ minimizing the reconstruction error is equivalent to maximizing the variance of
the projected data z; = Wx;
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Principal Component Analysis

PCA

@ the principal directions are the ones along which the data shows maximal
variance

@ this means that PCA can be "misled” by directions in which the variance is high
merely because of the measurement scale

@ in the figure below, the vertical axis (weight) uses a large range than the horizontal
axis (height), resulting in a line that looks somewhat “unnatural”

@ it is therefore standard practice to standardize the data first
(xij — 1)

0j

N N
where pj = + Y1 xj and 0F = 725 S (x5 — )’

Xij —>

weight

o o v oo »
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Principal Component Analysis

PCA

mean principal basis 1 reconstructed with 2 bases reconstructed with 10 bases

El =

principal basis 2 principal basis 3 reconstructed with 100 bases reconstructed with 506 bases

@ left: the mean and the first three PC basis vectors (eigendigits) based on 25
images of the digit 3 (from the MNIST dataset)

»
»

@ right: reconstruction of an image based on 2, 10, 100 and all the basis vectors
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Principal Component Analysis
PCA

@ low rank approximations to an image
@ top left: the original image is of size 200 x 320, so has rank 200

@ subsequent images have ranks 2, 5, and 20.
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@ Kevin Murphy's book
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