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Kernels
Why?

so far, we have been assuming that each object that we wish to classify or cluster
or process in anyway can be represented as a fixed-size feature vector xi ∈ RD

this may require to preprocess raw data in order to obtain fixed-size feature vectors

for certain kinds of objects, it is not clear how to best represent them as
fixed-sized feature vectors

for example, how do we represent

1 a text document or protein sequence, which can be of variable length?
2 a molecular structure, which has complex 3d geometry?
3 an evolutionary tree, which has variable size and shape?
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Kernels
Why?

common approach: assume that we have some way of measuring the similarity
between objects, that doesn’t require preprocessing them into feature vector
format

for example, when comparing strings, we can compute the edit distance between
them.

let κ(x, x′) ≥ 0 be some measure of similarity between objects x, x′ ∈ χ, where χ
is some abstract space; we will call κ a kernel function

we will now see together some algorithms that can be written purely in terms of
kernel function computations

we can use such algorithms when we don’t have access to (or choose not to look
at) the “inside” of the objects xi that we are processing
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Kernels
General Characterization

we define a kernel function to be a real-valued function of two arguments,
κ(x, x′) ∈ R, for x, x′ ∈ χ
typically the function is symmetric, i.e.

κ(x, x′) = κ(x′, x)

and non-negative, i.e.
κ(x, x′) ≥ 0

in general κ(x, x′) can be interpreted as a measure of similarity (but this may also
not be required)
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Kernels
RBF

a radial basis function or RBF kernel κ(x, x′) ∈ R is only a function of ‖x− x′‖

κ(x, x′) = ϕ(‖x− x′‖)

a typical example is the Squared Exponential kernel (SE kernel) or Gaussian
Kernel

κ(x, x′) = exp(−1

2
(x− x′)TΣ−1(x− x′)) = exp(−1

2
‖x− x′‖2Σ)

if Σ = diag(σ1, ..., σD) we obtain the ARD kernel (Automatic Relevance
Determination)

κ(x, x′) = exp

(
− 1

2

D∑
j=1

(xj − x ′j )2

σ2
j

)
σj can be interpreted as defining the characteristic length scale of dimension j

if Σ = σI we obtain the isotropic kernel

κ(x, x′) = exp

(
− ‖x− x′‖2

2σ2

)
where σ is called the bandwidth
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Kernels
Comparing Documents

when performing document classification or retrieval, it is useful to have a way of
comparing two documents xi and xi′

if we use a bag of words representation, where xij is the number of times words j
occurs in document i , we can use the cosine similarity

κ(xi , xi′) =
xT
i xi′

‖xi‖2‖xi′‖2

this quantity measures the cosine of the angle between xi and xi′ when interpreted
as vectors

since xi is a count vector (xij ≥ 0), the cosine similarity κ(xi , xi′) ∈ [0, 1]

κ(xi , xi′) = 0 means the vectors are orthogonal and therefore have no words in
common
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Mercer (Positive Definite) Kernels

some methods require that the kernel function satisfies the requirement that the
Gram matrix

K =

κ(x1, x1) ... κ(x1, xN)
...

. . .
...

κ(xN , x1) ... κ(xN , xN)


is positive definite for any set of inputs {xi}Ni=1

Mercel kernels or positive definite kernels satisfy the requirement K > 0

it can be shown that the Gaussian kernel and the cosine similarity kernel are
Mercer kernels
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Mercer (Positive Definite) Kernels

the importance of Mercer kernels is the following result, known as Mercer’s
theorem

if the Gram matrix is positive definite, i.e. K > 0 for any set of inputs {xi}Ni=1, we
can compute an eigenvector decomposition

K =

κ(x1, x1) ... κ(x1, xN)
...

. . .
...

κ(xN , x1) ... κ(xN , xN)

 = UTΛU

where Λ is a diagonal matrix of eigenvalues λi > 0

now consider an element of K

kij = (Λ1/2U:i )
T (Λ1/2U:j) = (Λ1/2ui )

T (Λ1/2uj)

let us define φ(xi ) , Λ1/2U:i , then we can write

kij = φ(xi )
Tφ(xj)

hence the entries kij can be computed by performing an inner product of some
new feature vectors φ(x) that are implicitly defined by the eigenvectors in U
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Mercer (Positive Definite) Kernels

in general, if the kernel is Mercer then there exists a function φ mapping x ∈ χ
to φ(x) ∈ RD such that

κ(x, x′) = φ(x)Tφ(x′)

where φ depends on the eigen functions of κ (where D is potentially infinite)

conclusion: since we are able to define a similarity distance κ(x, x′) in terms of an
inner product, i.e. κ(x, x′) = φ(x)Tφ(x′), the result is that we are implicitly
transforming each raw data sample x ∈ χ into a new feature vector φ(x)
without any need to explicitly represent it
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Mercer (Positive Definite) Kernels

for example, the polynomial kernel κ(x, x′) = (γxTx′ + r)M , where r > 0 is a
Mercel kernel

in this case one can show that φ(x) contains all the terms up to degree M

for example with M = 2 and γ = r = 1, we have

(xTx′ + 1)2 = φ(x)Tφ(x′)

with φ(x) = [1,
√

2x1,
√

2x2, x
2
1 , x

2
2 ,
√

2x1x2]T ∈ R6

the Gaussian kernel is also a Mercel kernel

the feature map φ of a Gaussian kernel lives in an infinite dimensional space: in
such a case, it is clearly infeasible to explicitly represent the feature vectors

recall that

exp(x) =
∞∑
k=0

xk

k!

which means that we are dealing with a ”polynomial degree” M →∞

Luigi Freda (”La Sapienza” University) Lecture 9 December 29, 2016 16 / 58



Mercer Kernels

an example of non-Mercer kernel is the sigmoid kernel

κ(x, x′) = tanh(γxTx′ + r)

in general, verifying that a kernel is a Mercer kernel is difficult, and requires
techniques from functional analysis

however, one can show that it is possible to build up new Mercer kernels from
simpler ones using a set of standard rules

for example, if κ1 and κ2 are both Mercer, so is

κ(x, x′) = κ1(x, x′) + κ2(x, x′)
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Linear Kernel

deriving the feature vector φ implied by a kernel is in general quite difficult, and
only possible if the kernel is Mercer

however, deriving a kernel from a feature vector φ is easy

κ(x, x′) = φ(x)Tφ(x′) = 〈φ(x),φ(x′)〉

if φ(x) = x , we get the linear kernel, defined by

κ(x, x′) = xTx′

this is useful if the original features are individually informative and the decision
boundary is likely to be representable as a linear combination of the original
features

of course, when data is not linearly separable, non-linear kernels are required
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Matern Kernel

the Matern kernel is commonly used in Gaussian process regression and has the
following form

κ(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
where r , ‖x− x′‖ with ν > 0, l > 0 and Kν is a modified Bessel function
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String Kernel

the real power of kernels arises when the inputs are structured objects

we now describe one way of comparing two strings x and x′ of lengths D, D ′ using
a string kernel

the two strings are defined over the 20 letter alphabet
A = {A,R,N,D,C ,E ,Q,G ,H, I , L,K ,M,F ,P,S ,T ,W ,Y ,V }
let x be the following sequence of length 110

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQ

TVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

and let x′ be the following sequence of length 153

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHV

LLARLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADG

MLFEKKLWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

these strings have the substring LQE in common

we can define the similarity of two strings to be the number of substrings they
have in common
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String Kernel

more formally and more generally, let us say that s is a substring of x if we can
write x = usv for some (possibly empty) strings u, s and v

now let φs(x) denote the number of times that substring s appears in string x

we define the kernel between two strings x and x′ as

κ(x, x′) =
∑
s∈A∗

wsφs(x)φs(x
′)

where ws ≥ 0 and A∗ is the set of all strings (of any length) from the alphabet A
this is a Mercer kernel
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Kernel Machines

we define a kernel machine to be a Generalized Linear Model (GLM) where the
input feature vector has the form

φ(x) =
[
κ(x,µ1), ..., κ(x,µK )

]
where µk ∈ χ are the set of K centroids

open question: how to choose the centroids µk?

the above vector φ(x) is called kernelized feature vector

kernel machines do not require that the kernel are Mercel

if κ is an RBF kernel, the corresponding kernel machine is called a RBF network
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Kernel Machines

we can use the kernelized feature vector for logistic regression by defining

p(y |x,θ) = Ber(y |sigm(wTφ(x)))

this provides a simple way to define a non-linear decision boundary

left: fitting a linear logistic regression classifier using degree 10 polynomial
expansion.

right: same model, but using an RBF kernel with centroids specified by the 4 black
crosses
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Kernel Machines

we can also use the kernelized feature vector inside a linear regression model
by defining

p(y |x,θ) = N (y |wTφ(x), σ2)
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Kernel Machines

left column: fitted function where D = {(xi , yi )}Ni=1 and yi , xi ∈ R
middle column: RBF basis functions κ(x , µi ) evaluated on a grid (K = 10
functions uniformly spaced)

right column: design matrix

top to bottom we show different bandwidths: σ = 0.1, σ = 0.5, σ = 50
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Kernel Machines
Centroids Selection

how to choose the centroids µk?

φ(x) =
[
κ(x,µ1), ..., κ(x,µK )

]
if D is small, a simple solution is to uniformly tile/grid the space occupied by the
data (recall the curse of dimensionality)

another approach is to find clusters in the data (but how to pick the number of
clusters)

a simpler approach is to make each sample xi a prototype

φ(x) =
[
κ(x, x1), ..., κ(x, xN)

]
and use a sparse-promoting prior for w to efficiently select subset of training
exemplars xi

another very popular approach is the Support Vector Machine (SVM) which
modify the likelihood term instead of using a sparsity-promoting prior
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Kernel Trick

rather than defining our feature vector in terms of kernels

φ(x) =
[
κ(x, x1), ..., κ(x, xN)

]
we can instead work with the original feature vectors x, but modify the
algorithm so that it replaces all inner products of the form 〈x, x′〉 = xTx′ with a
call to the kernel function, κ(x, x′)

this is called the kernel trick

it turns out that many algorithms can be kernelized in this way

the use of Mercer kernel is required for this trick to work
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Kernelized 1NN Classification

a 1NN classifier computes the Euclidean distance of a test vector to all the
training points, find the closest one, and look up its label

this can be kernelized by observing that

‖x− x′‖22 = 〈x− x′, x− x′〉 = 〈x, x〉+ 〈x′, x′〉 − 2〈x, x′〉

in this way we can redefine the distance by using the chosen kernel
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Kernelized Ridge Regression
The Primal Problem

x ∈ RD and X ∈ RN×D

minimization problem

J(w) =
1

N

N∑
i=1

(yi − (w0 + wTxi )
2) + λ‖w‖22 = ‖y − Xw‖22 + λ‖w‖22

the solution is
w = (XTX + λID)−1XTy

but here we do not have yet inner products to replace with kernel functions
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Kernelized Ridge Regression
The Dual Problem

by using the matrix inversion lemma

(E− FH−1G)−1FH−1 = E−1F(H− GE−1F)−1

and setting E = ID , H = IN , F = −XT and G = X we can pass from

w = (XTX + λID)−1XTy

to
w = XT (XXT + λIN)−1y
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Kernelized Ridge Regression
The Dual Problem

given
w = XT (XXT + λIN)−1y

we can replace XXT with K since kij = xT
i xj

we can define the dual variables

α , (XXT + λIN)−1

hence, one has

w = XTα =
N∑
i=1

αixi

the solution vector w is just a linear sum of the N training vectors

if we plug this in at test time to compute the predictive mean

f̂ (x) = wTx =
N∑
i=1

αix
T
i x =

N∑
i=1

αiκ(x, xi )

this kind of technique can be used to kernelize many other linear models such as
logistic regression
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SVM
Loss Functions

consider the regularized empirical risk function

J(w, λ) =
N∑
i=1

L(yi , ŷi ) + λ‖w‖2

where ŷi = wTx + w0

if L(yi , ŷi ) = (yi − ŷi )
2 we have a quadratic loss and the problem becomes a ridge

regression

if L(yi , ŷi ) = − log p(yi |xi ,wi ) = − log(sigm(yiηi )) = log(1 + e−yiηi ) with
yi ∈ {−1, 1} and ηi = wTxi + w0, we have a log-loss and the problem becomes a
logistic regression

we have seen how to kernelize a model but we want also a sparse solution for
efficiency reasons

if we replace the quadratic/log-loss with some other loss function, we can ensure
that the solution is sparse, so that predictions only depend on a subset of the
training data, known as support vectors

this combination of the kernel trick plus a modified loss function is known as a
support vector machine or SVM
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SVM
Regression

let’s consider a regression problem J(w, λ) =
∑N

i=1 L(yi , ŷi ) + λ‖w‖2 with
ŷi = wTx + w0

if we use the epsilon insensitive loss function

Lε(y , ŷ) ,

{
0 if ‖y − ŷ‖ < ε

‖y − ŷ‖ − ε otherwise

it means that any point lying inside an ε-tube around the prediction is not
penalized
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SVM
Regression

the objective function is usually written as

J = C
N∑
i=1

Lε(yi , ŷi ) +
1

2
‖w‖2

with ŷi = f (xi ) = wTxi + w0 and C = 1
λ

is regularization constant

this objective function is convex and unconstrained but not differentiable
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SVM
Regression

one popular approach is to formulate the problem as a constrained optimization
problem

in particular, we can introduce the slack variables ξ+i ≥ 0 and ξ−i ≥ 0 to represent
the degree to which each point xi lies outside the tube

yi ≤ f (xi ) + ε+ ξ+i

yi ≥ f (xi )− ε− ξ+i
the problem can be restated as a standard quadratic program in 2N + D + 1
variables

J = C
N∑
i=1

(ξ+i + ξ−i ) +
1

2
‖w‖2 s.t. ξ+i ≥ 0 and ξ−i ≥ 0
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SVM
Regression

the problem

J = C
N∑
i=1

(ξ+i + ξ−i ) +
1

2
‖w‖2 s.t. ξ+i ≥ 0 and ξ−i ≥ 0

it is possible to show that the optimal solution has the form

ŵ =
∑
i

αixi with αi ≥ 0

it turns out that in the solution the vector α is sparse, because we don’t care
about errors which are smaller than ε

the xi for which αi > 0 are called the support vectors: these are points for which
the errors lie on or outside the tube

all other vectors can be neglected when computing ŵ
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SVM
Regression

at test time we evaluate the y function as

ŷ(x) = ŵ0 + ŵTx

once we plug in the definition of ŵ we have

ŷ(x) = ŵ0 +
∑
i

αix
T
i x

and we can kernelize it by replacing the inner product with the kernel function

ŷ(x) = ŵ0 +
∑
i

αiκ(x, xi )
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SVM
Classification

let’s consider a logistic regression problem where yi ∈ {−1,+1}
the objective function is

J(w, λ) =
N∑
i=1

L(yi , ŷi ) + λ‖w‖2

with a log-loss L(yi , ηi ) = − log p(yi |xi ,wi ) = − log(sigm(yiηi )) = log(1 + e−yiηi )
where ηi = f (xi ) = wTxi + w0 represents our “confidence” in choosing label ŷi = 1

in principle, we could use the 0-1 loss L(yi , ηi ) = I(yi 6= ηi ) = I(yiηi < 0) so as to
minimize the misclassification error

unfortunately, the 0-1 risk is a very non-smooth objective and hence is hard to
optimize

the SVM algorithm replaces the log-loss with the hinge loss

Lhinge(yi , ηi ) , max(0, 1− yiηi ) = (1− yiηi )+

where (v)+ , max(0, v)
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SVM
Classification

η = f (x) = wTx + w0 represents our “confidence” in choosing label y = 1

log-loss L(y , η) = − log p(y |x,w) = log(1 + e−yη)

0-1 loss L(y , η) = I(y 6= η) = I(yη < 0)

hinge loss Lhinge(y , η) , max(0, 1− yη) = (1− yη)+

the hinge loss and log-loss represent smooth convex upper bounds on the 0-1 loss

in the figure below, the horizontal axis is the margin yη, the vertical axis is the loss
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SVM
Classification

the objective function is

J =
1

2
‖w‖2 + C

N∑
i=1

(1− yiηi )+

with ηi = f (xi ) = wTxi + w0

since the function (1− yiηi )+ is not differentiable we can introduce the slack
variable ξi ≥ 0 and rewrite the objective as

J =
1

2
‖w‖2 + C

N∑
i=1

ξi s.t. ξi ≥ 0, yi (wTxi + w0) ≥ 1− ξ, i = 1 : N
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SVM
Classification

the objective

J =
1

2
‖w‖2 + C

N∑
i=1

ξi s.t. ξi ≥ 0, yi (wTxi + w0) ≥ 1− ξ, i = 1 : N

it is possible to show that the optimal solution has the form

ŵ =
∑
i

αixi with αi = λiyi

and where α is sparse (because of the hinge loss)

the xi for which αi > 0 are called support vectors: these are points which are
either incorrectly classified, or are classified correctly but are on or inside the
margin
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SVM
Classification

at test time we evaluate the y function as

ŷ(x) = sign(f (x)) = sign(ŵ0 + ŵTx)

once we plug in the definition of ŵ we have

ŷ(x) = sign(ŵ0 +
N∑
i=1

αix
T
i x)

and we can kernelize by replacing the inner product with the kernel function

ŷ(x) = sign(ŵ0 +
N∑
i=1

αiκ(x, xi ))
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SVM Classification
Large Margin Principle

now let’s revise the previous concepts under a geometrical point of view

f (x) is the discriminant function which will be linear in the feature space
implied by the choice of the kernel

f (x) = 0 is the decision boundary

now, for simplicity, let’s assume that x belongs to the kernel induced space φ(χ)
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SVM Classification
Large Margin Principle

for each point we have x = x⊥ + r w
‖w‖ where r is the distance of x from the

decision boundary f (x) = wTx + w0 = 0 (which is an hyperplane whose normal
vector is w), and x⊥ is the orthogonal projection of x onto this boundary (hence
wTx⊥ + w0 = 0)

if we plug the decomposition of x in f (x), we have

f (x) = wTx + w0 = (wTx⊥ + w0) + r
wTw

‖w‖ = r‖w‖ =⇒ r =
f (x)

‖w‖
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SVM Classification
Large Margin Principle

for each point xi we would like to make this perpendicular distance r = f (xi )
‖w‖ as

large as possible

in particular, there might be many lines that perfectly separate the training data

the best one to pick is the one that maximizes the margin, i.e., the
perpendicular distance to the closest point

in addition, we want to ensure each point is on the correct side of the boundary,
hence we want f (xi )yi > 0

Luigi Freda (”La Sapienza” University) Lecture 9 December 29, 2016 53 / 58



SVM Classification
Large Margin Principle

our objective becomes

max
w,w0

N

min
i=1

yi (wTxi + w0)

‖w‖

rescaling the parameters using w→ kw and w0 → kw0 , we do not change the
distance of any point to the boundary, since the k factor cancels out when we
divide by ‖w‖
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SVM Classification
Large Margin Principle

our objective is

max
w,w0

N

min
i=1

yi (wTxi + w0)

‖w‖
therefore let us define the scale factor such that yi fi = 1 for the point that is
closest to the decision boundary

note that maximizing 1/‖w‖ is equivalent to minimizing ‖w‖2

thus we get the new objective

min
w,w0

1

2
‖w‖2 s.t yi (wTxi + w0) ≥ 1, i = 1 : N

the constraint says that we want all points to be on the correct side of the decision
boundary with a margin of at least 1
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SVM Classification
Large Margin Principle

if the data is not linearly separable (even after using the kernel trick), there will
be no feasible solution in which yi fi ≥ 1 for all i

we therefore introduce slack variables ξ ≥i 0 such that ξi = 0 if the point is on or
inside the correct margin boundary, and ξi = |yi − fi | otherwise

we replace the hard constraints that yi fi ≥ 1 with the soft margin constraints
that yi fi ≥ 1− ξi
the new objective becomes

min
w,w0

1

2
‖w‖2 + C

N∑
i=1

ξi s.t ξi ≥ 0, yi (wTxi + w0) ≥ 1, i = 1 : N
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SVM Classification
Large Margin Principle

the new objective

min
w,w0

1

2
‖w‖2 + C

N∑
i=1

ξi s.t ξi ≥ 0, yi (wTxi + w0) ≥ 1, i = 1 : N

since ξi > 1 means point i is misclassified, we can interpret
∑

i ξi as an upper
bound on the number of misclassified points

the parameter C is a regularization parameter that controls the number of errors
we are willing to tolerate on the training set

it is common to define this using C = 1/(νN) where 0 < ν ≤ 1 controls the
fraction of misclassified points that we allow during the training phase
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