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Abstract

This paper presents a novel method for sensor-based exploration of unknown environments by a general robotic
system equipped with multiple sensors. The method is based on the incremental generation of a configuration-space
data structure called Sensor-based Exploration Tree (SET). The expansion of the SET is driven by information
at the world level, where the perception process takes place. In particular, the frontiers of the explored region
efficiently guide the search for informative view configurations. Different exploration strategies may be obtained
by instantiating the general SET method with different sampling techniques. Two such strategies are presented and
compared by simulations in non-trivial 2D and 3D worlds. A completeness analysis of SET is given in the paper.

I. INTRODUCTION

This paper presents a novel exploration method by which a general robotic system equipped with
multiple sensors can explore an unknown environment. The method is suitable for generic robotic systems
(such as fixed or mobile manipulators, wheeled or legged mobile robots, flying robots), equipped with
any number of range finders.

In a sensor-based exploration, the robot is required to ‘cover’ the largest possible part of the world with
sensory perceptions. A considerable amount of literature addresses this problem for single-body mobile
robots equipped with one sensor, typically an omnidirectional laser range finder. In this context, frontier-
based strategies [1]–[5] are an interesting class of exploration algorithms. These are based on the idea
that the robot should approach the boundary between explored and unexplored areas of the environments
in order to maximize the expected utility of robot motions.

The problem of exploring an unknown world using a multi-body robotic system equipped with multiple
sensors is more challenging. In fact, the sensing space (the world) and the planning space (the configuration
space) are very different in nature: the former is a Euclidean space of dimension 2 or 3, while the latter
is a manifold in general with dimension given by the number of configuration coordinates, typically 6 or
more. While frontiers at the world level clearly retain their informative value, using this information to
efficiently plan actions in configuration space is not straightforward.

In the literature, few works exist that address the sensor-based exploration problem for articulated
structures, mainly for fixed-base manipulators equipped with a single sensor, e.g., see [6]–[9]. A related
problem is 3D object reconstruction and inspection [10].

The SET (Sensor-based Exploration Tree) method, which was originally presented in [11] for single-
sensor robotic systems, is a frontier-based exploration method. The basic idea is to guide the robot
so as perform a depth-first exploration of the world, progressively sensing regions that are contiguous
from the viewpoint of sensor location. In this process, frontiers are used to efficiently identify informative
configurations. The information gathered about the free space is mapped to a configuration space roadmap
which is incrementally expanded via a sampling-based procedure. The roadmap is used to select the
next view configuration, which is added to the SET. In the exploration process, the robot alternates
forwarding/backtracking motions on the SET, which essentially acts as an Ariadne’s thread.

This work has been funded by the European Commission’s Sixth Framework Programme as part of the project PHRIENDS under grant
no. 045359.
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In this work, we present (i) an extension of the SET method to multi-sensor robotic systems (ii) a
completeness analysis of the algorithm (iii) a SET implementation on non-trivial 2D and 3D worlds. In
particular, we discuss how to identify which frontiers are relevant for guiding the perception of each
sensor and how to assign priorities to the sensors during view planning.

The paper is organized as follows. The problem setting is given in Sect. II. A general exploration
method is outlined in Sect. IV and the SET method is presented in Sect. V. Simulation results in different
worlds are reported and discussed in Sect. VII. Some extensions of the present work are mentioned in
the concluding section.

II. PROBLEM SETTING

The robot wakes up in a unknown world populated by obstacles. Its task is to perform an exploration,
i.e. cover the largest possible part of the world with sensory perceptions.

A. Robot and World Models
The robot, denoted by A, is a kinematic chain of r rigid bodies (r ≥ 1) interconnected by elementary

joints. This description includes: fixed-base manipulators, single-body and multiple-body mobile robots,
flying robots, humanoids and mobile manipulators.

The world W is a compact connected subset of IRN , with N = 2, 3. It represents the physical space
in which the robot moves and acquires perceptions. W contains the static obstacles O1, ...,Op, each a
compact connected subset of W . One of these obstacles is the world boundary ∂W which is considered
as a ‘fence’. Denoting by O =

⋃m
i=1Oi the obstacle region, the free world is Wfree =W \O.

The robot configuration space has dimension n and is denoted by C, while q is a robot configuration.
Let A(q) be the compact region of W occupied by the robot at q. The C-obstacle region CO is the set
of q such that A(q) ∩ O 6= ∅. The free configuration space is Cfree = C \ CO.

B. Sensor Model
The robot is equipped with a system of m exteroceptive sensors, whose operation is formalized as

follows.
Assuming1 that the robot is at q, denote by Fi(q) ⊂ IRN the compact region occupied by the i-th sensor

field of view, which is star-shaped with respect to the sensor center si(q) ∈ W . In IR2, for instance, Fi(q)
can be a circular sector with apex si(q), opening angle αi and radius Ri, where the latter is the perception
range (see Fig. 1, left). The (total) sensor field at q is F(q) =

⋃m
i=1Fi(q).

With the robot at q, a point p ∈ W is said to be visible from the i-th sensor if p ∈ Fi(q) and the open
line segment joining p and si(q) does not intersect ∂O ∪ ∂A(q). Denote by Vi(q) the points of Wfree that
are visible from the i-th sensor. At each configuration q, the robot sensory system returns (see Fig. 1,
right):
• the visible free region (or view) V(q) =

⋃m
i=1 Vi(q);

• the visible obstacle boundary B(q) = ∂O∩∂V(q), i.e., all points of ∂O that are visible from at least
one sensor.

The above sensor is an idealization of a ‘continuous’ range finder. For example, it may be a rotating
laser range finder, which returns the distance to the nearest obstacle point along the directions (rays)
contained in its field of view (with a certain resolution). Another sensory system which satisfies the above
description is a stereoscopic camera.

1The sensor placement is determined by the robot configuration q. Hence, for each sensor that is not rigidly attached to the robot (e.g.,
that can independently rotate around a certain axis, or is mounted on a pan-tilt platform), it is necessary to include the corresponding dof’s
in q.
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Fig. 1. Left: sensor centers si(q) and si+1(q), and the associated fields of view Fi(q) and Fi+1(q) when the robot is at configuration q.
Right: The view V(q) and the visible obstacle boundary B(q).

C. Exploration task
The robot explores the world through a sequence of view-plan-move actions. Each configuration where

a view is acquired is called a view configuration. Let q0 be the initial robot configuration and q1, q2, ..., qk

the sequence of view configurations up to the k-th exploration step. When the exploration starts, all the
initial robot endogenous knowledge can be expressed as

E0 = A(q0) ∪ V(q0), (1)

where A(q0) represents the free volume2 that the robot body occupies (computed on the basis of propri-
oceptive sensors) and V(q0) is the view at q0 (provided by the exteroceptive sensors). At step k ≥ 1, the
explored region is

Ek = Ek−1 ∪ V(qk).

At each step k, Ek ⊆ Wfree is the current estimate of the free world. Since safe planning requires
A(qk) ⊂ Ek−1 for any k, we have

Ek = A(q0) ∪

(
k⋃

i=0

V(qi)

)
. (2)

A point p ∈ Wfree is defined explored at step k if it is contained in Ek and unexplored otherwise.
A configuration q is safe at step k if A(q) ⊂ cl(Ek), where cl(·) indicates the set closure operation
(configurations that bring the robot in contact with obstacles are allowed). The safe region Sk ⊆ Cfree
collects the configurations that are safe at step k, and represents a configuration space image of Ek. A
path in C is safe at step k if it is completely contained in Sk.

The goal of the exploration is to expand Ek as much as possible as k increases. Assume that the robot
can associate an information gain I(q, k) to any (safe) q at step k. This is an estimate of the world
information which can be discovered at the current step by acquiring a view from q.

Consider the k-th exploration step, which starts with the robot at qk. Let Qk ⊂ Sk be the informative
safe region, i.e. the set of configurations which (i) have non-zero information gain, and (ii) can be reached3

from qk through a path that is safe at step k. The exploration can be considered completed at step k if
Qk = ∅, i.e., no informative configuration can be safely reached.

2Often, A(q0) in (1) is replaced by a larger free volume Ã whose knowledge comes from an external source. This may be essential for
planning safe motions in the early stages of an exploration.

3The reachability requirement accounts for possible kinematic constraints to which robot may be subject.
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D. Information Gain
Throughout this paper we assume the following definition of information gain.
At step k, the boundary of the explored region ∂Ek is the union of two disjoint sets:
• the obstacle boundary ∂Ek

obs, i.e., the part of ∂E which consists of detected obstacle surfaces;
• the free boundary ∂Ek

free, i.e., the complement of ∂Ek
obs, which leads to potentially explorable areas.

One has ∂Ek
obs =

⋃k
i=0 B(qi) and ∂Ek

free = ∂Ek \ ∂Ek
obs.

Let V(q, k) be the simulated view, i.e., the view which would be acquired from q if the obstacle
boundary were ∂Ek

obs. The information gain I(q, k) is defined as the measure of the set of unexplored
points lying in V(q, k) [3], [7]. The SET method also makes use of the partial versions of these concepts,
denoted respectively by Vj(q, k) and Ij(q, k), which only consider the contribution of the j-th sensor.
While V(q, k) =

⋃m
j=1 Vj(q, k), it is I(q, k) 6=

∑m
j=1 Ij(q, k), since partial simulated views may overlap.

Finally, let Qk
j = {q ∈ Qk | Ij(q, k) 6= 0} be the partial informative safe region of the j-th sensor. It is

Qk =
⋃m

j=1Qk
j .

III. EXPLORABLE REGIONS AND VIEW COVERAGE PROBLEMS

The defined exploration task belongs to the more general class of view coverage problems, which is
presented in this section. The following discussion introduces some conditions for the existence of a
solution to the exploration problem. Moreover, it presents some cases in which these condition are not
satisfied and, thereby, the exploration problem has no solution.

A. Reachable Region
At step k, let Rk ⊂ Sk be the reachable region, i.e., the set of configurations which can be reached

from qk through a path that is safe at step k. The reachable region has the following properties:
• it is a connected region of the configuration space containing qk;
• Qk ⊂ Rk ⊂ Sk.

Note that the informative safe region Qk is not connected in general.

B. Maps and Important Regions
In this section, we introduce three maps which can be conveniently used to restate the previous

definitions in a functional form. These better explicit the dependances between sets in world and in
the configuration space.

The safe region map, denoted by

ms : pow(W)→ pow(C),

associates each set E ⊆ W to the set ms(E) = {q ∈ C |A(q) ⊆ cl(E)}. It is Sk = ms(Ek).
The reachable region map, denoted by

mr : C × pow(W)→ pow(C),

associates each pair (q, E) ∈ C ×pow(W) to the set mr(q, E) which is the set of configurations of ms(E)
which are reachable4 from q. It is Rk = mr(q

k, Ek) = mr(q
0, Ek) since qk ∈ Rk−1 = mr(q

0, Ek−1) for
any k ≥ 1.

It is easy to show that

E ′ ⊆ E ⇒ ms(E ′) ⊆ ms(E) ∧ mr(E ′) ⊆ mr(E). (3)

4The reachability requirement accounts for possible kinematic/dynamic constraints to which robot may be subject.
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Furthermore, ms(E ′) = ms(E) (or mr(E ′) = mr(E)) does not imply E ′ = E . Clearly, since it is

E0 ⊆ E1 ⊂ ... ⊆ Ek

one has
S0 ⊆ S1 ⊂ ... ⊆ Sk = ms(Ek), R0 ⊆ R1 ⊂ ... ⊆ Rk = mr(q

0, Ek)

Table I presents and compares important regions and their on-line estimates using the above maps.

Important regions On-line estimates
Wfree Ek

Cfree = ms(Wfree) Sk = ms(Ek)
Ccon = mr(q

0,Wfree) Rk = mr(q
0, Ek)

TABLE I

The explorable region map, denoted by

me : pow(C)→W

associates each set R ⊂ C to the set me(R) =
⋃

q∈R V(q). Clearly, it is

R′ ⊆ R ⇒ me(R′) ⊆ me(R). (4)

In general, the reverse does not hold.

C. Maximum Explorable Regions and Maximum Coverable Region
The ‘initial condition’ for a robot exploration is the pair (q0, E0) ∈ Cfree×pow(Wfree) (exploration initial

condition). Starting from it, any exploration method generates an exploration sequence, i.e., a sequence
of view configurations {qi} such that qi ∈ Ri−1 = mr(q

0, E i−1) for any i.
At step k, let Ek

max ⊆ W be the maximum explorable region, i.e., the set

Ek
max = E0 ∪

 ⋃
q∈mr(q0,Ek−1

max )

V(q)


where E0

max = E0. It is

Ek
max = E0 ∪ [me ◦mr(q

0, Ek−1
max)] = E0 ∪ [(me ◦mr)

k(q0, E0)]

where (me ◦mr)
k denotes (with abuse of notation) the composition of me ◦mr for k times. Clearly, the

set Ek
max depends on the initial condition (q0, E0) and determines an un upper-bound for any explored

region which can be obtained at step k starting from the same initial condition, i.e.,

Ek ⊆ Ek
max (5)

Let Ecov ⊆ W be the maximum coverable region, i.e., the set

Ecov = E0 ∪

[ ⋃
q∈Ccon

V(q)

]
.

where Ccon = mr(q
0,Wfree). One has

Ecov = E0 ∪me(Ccon) = E0 ∪ [me ◦mr(q
0,Wfree)].

Indeed, the maximum coverable region Ecov is the largest region of the world which can be explored
by the robot starting from (q0, E0).
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obstacle region

Fig. 2.

Proposition 3.1: Given an initial condition (q0, E0), it is at each step k

Ek ⊆ Ek
max ⊆ Ecov (6)

Proof: Since it is Ek−1
max ⊆ Wfree for any k ≥ 1, one has mr(q

0, Ek−1
max) ⊆ mr(q

0,Wfree). Applying the
map me to this last relation and recalling eq. (4), the thesis easily follows.

Proposition 3.2: The following implication holds:

Qk = ∅ ⇒ Ek = Ek
max = Ek+1

max

Proof: It is

Qk = ∅ ⇒ Ek = E0 ∪

 ⋃
q∈Rk

V(q)

 . (7)

In fact, if Qk = ∅ there is no q ∈ Rk such that V(q, k) \ Ek 6= ∅. This in turn implies that there is no
q ∈ Rk such that V(q) \ Ek 6= ∅ (note that V(q) ⊂ V(q, k) since the obstacle boundary ∂Ek

obs is contained
in the obstacle region O). Hence, eq. (7) follows.

At this point, note that there exists j ∈ IN such that mr(q
0, E j

max) ⊆ Rk (at least, it is j = 0 since
mr(q

0, E0) = R0 ⊆ Rk, where E0 = E0
max). This implies

E j+1
max = E0 ∪

 ⋃
q∈mr(q0,Ej

max)

V(q)

 ⊆ Ek = E0 ∪

 ⋃
q∈Rk

V(q)

 .
Thereby, it is mr(q

0, E j+1
max) ⊆ mr(q

0, Ek) = Rk which in turn implies E j+2
max ⊆ Ek. By induction, one has

Ek
max ⊆ Ek+1

max ⊆ E
k. Recalling eq. (5), the thesis follows.

Corollary 3.3: Given an initial condition (q0, E0), a necessary condition for the existence of a finite
exploration sequence of length k <∞ such that Qk = ∅ is:

∃l ∈ IN : E l
max = E l+1

max, (8)

where, in general, l ≤ k.
Remark 3.4: In general, E l

max = E l+1
max does not imply E l

max = Ecov since the initial geometric restrictions
imposed by E0 may eventually hamper the exploration of some portions of Ecov.

Remark 3.5: There are cases in which for any (q0, E0) there is no l ∈ IN such that E l
max = E l+1

max. For
instance, consider the planar case shown in Fig. 2: the robot is a point equipped with an omnidirectional
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rangefinder; the world W is a squared box and the obstacle O region is a logarithmic spiral. In this case,
for any q0, the set Ecov is bounded and equal to Wfree. However, for any (q0, E0) the sequence {E i

max} is
strictly increasing, i.e., E i

max ⊂ E i+1
max for any i ∈ IN .

Remark 3.6: Condition (8) is only a necessary condition for the existence of a finite exploration
sequence of length k such that Qk = ∅. Consider the case depicted in Fig. 3: the robot is a planar
2R manipulator with a fixed base, two links of length L and a single rangefinder mounted on the tip of
the second link. No obstacles are present in the world. Here, the maximum coverable region Ecov is the
closed (red) circle of radius R+2L centered at the base joint. If E0 is a circle of radius 2L centered at the
base joint and q0 ∈ mr(q

0, E0), one has5 E1
max = E2

max = Ecov. Nevertheless, there is no finite exploration
sequence of length k <∞ such that Qk = ∅. Intuitively, this is due to the fact that any robot sensor view
can at most ‘touch’ ∂Ecov in a single point, i.e. for any pair (p′, q′) ∈ ∂Ecov × Ccon such that p′ ∈ V(q′),
one has p′ = V(q′) ∩ ∂Ecov. This implies that in order to complete the exploration the robot needs to
acquire at least ∞1 views in order to cover ∂Ecov ⊂ Ecov (in this example Ecov is a closed set, this is not
true in general). This is due to the fact that the radius of curvature of the sensor field of view boundary
(i.e. the perception range R) is smaller than the radius of curvature of the maximum coverable region
boundary (i.e. R + 2L).

Remark 3.7: The example described in the previous Remark 3.6 can be generalized in order to identify
more general ‘pathological’ cases, i.e., cases in which there is no finite exploration sequence of length
k <∞ such that Qk = ∅.

Assume there exists l ∈ IN such that E l
max = E l+1

max. Let K be the views boundary, i.e. the set

K =

 ⋃
q∈mr(q0,El

max)

∂V(q)

 \
 ⋃

q∈mr(q0,El
max)

◦
V(q)

 .
where

◦
V(q) denotes the interior of V(q). In general, K can have a non-empty intersection with the interior

of E l
max (see the example shown in Fig. 4).

Assume there exists a manifold M ⊂ K with the following property: for any pair (p′, q′) ∈ M ×
mr(q

0, E l
max) such that p′ ∈ V(q′) it is p′ = M∩ V(q′) (i.e., any sensor view can at most ‘touch’ the

manifold M in a single point). Note that a necessary condition for the set M to satisfy this last property

5In this simple example, it is easy to envisage other pairs (q0, E0) for which ∃l ∈ IN : E l
max = E l+1

max = Ecov.
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Fig. 4. The world, the obstacles and the robot are rectangles in IR2. In particular, the robot is the depicted small rectangle (red/thick line)
and is only allowed to translate. Ecov equals Wfree. Given the particular sensor perception range and the sizes of the obstacles and the robot,
the views boundary K is the union of the world boundary and the open line segment EF ⊂ Ecov.

is

M∩

 ⋃
q∈mr(q0,El

max)

◦
V(q)

 = ∅.

In this case, as in the previous example, the robot needs to acquire an uncountable number of views in
order to completely cover M ⊂ E l

max. Hence, there is no finite exploration sequence of length k < ∞
such that Qk = ∅

D. Extension and Dimension of the Explorable Regions
Given a set E ⊆ W and a pair of points x, y ∈ E , denote by ssp(x, y) the shortest path which joins x

and y and is contained in cl(E) (shortest safe path). Denote by length(τ) ∈ IR the length of a path τ .
Denote by sd(E) be the safe diameter of the set E , i.e.,

sup{length(ssp(x, y)) : (x, y) ∈ E}.

Clearly, the diameter of a set E , defined as sup{‖x − y‖ : (x, y) ∈ E}, is always smaller than its safe
diameter.

Proposition 3.8: Given an initial condition (q0, E0), it is

sd(Ek
max) ≤ sd(E0) + 2kR (9)

Proof: For any pair of points x, y ∈ Ek
max, one of the following three cases occurs:

• both points x, y ∈ Ek−1
max . Hence length(ssp(x, y)) ≤ sd(Ek−1

max).
• both points x, y ∈ Ek

max \ Ek−1
max . In this case, there are two configurations qx, qy ∈ mr(q

0, Ek−1
max) such

that x ∈ V(qx), s(qx) ∈ Ek−1, y ∈ V(qy) and s(qy) ∈ Ek−1. Hence, a safe path joining x and y can
be built connecting: the segment (x, s(qx)) ⊂ V(qx), a safe path joining s(qx) and s(qy) which is
contained in Ek−1

max , the segment (y, s(qy)) ⊂ V(qy). It follows length(ssp(x, y)) ≤ sd(Ek−1
max) + 2R.

• only one of the two points belongs to Ek
max\Ek−1

max . Using the same arguments, it follows length(ssp(x, y)) ≤
sd(Ek−1

max) +R.
Consequently, one has:

sd(Ek
max) ≤ sd(Ek−1

max) + 2R

and the thesis easily follows.
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robot

Fig. 5. A point robot moves in a rectangular box in which the obstacles are an infinite sequence of triangles and line segments whose
dimensions exponentially decrease.

Using similar arguments, it is easy to infer that

sd(
k⋃

i=0

V(qi)) ≤ 2(k + 1)R (10)

Remark 3.9: From (9), it follows that given an initial pair (q0, E0), where E0 has a finite safe diameter,
if there is l ∈ IN such that E l

max = E l+1
max, then the final maximum explorable region E l

max has a finite safe
diameter.

Corollary 3.10: Given an initial condition (q0, E0) such that sd(E0) < ∞, a necessary condition for
the existence of an integer l ∈ IN such that

E l
max = E l+1

max = Ecov
is that sd(Ecov) <∞.

According to this corollary, in the case of Fig. 2, Ecov is bounded but has not a finite safe diameter.
It is worth noting that the above condition is only necessary. For instance, consider a point robot

equipped with an omnidirectional rangefinder in the rectangular world depicted in Fig. 5. Here, the
obstacles are an infinite sequence of triangles and line segments (on the bottom) whose dimensions
exponentially decrease. In this case, for any q0, the set Ecov equals Wfree. However, for any (q0, E0) the
sequence {E i

max} is strictly increasing, i.e., E i
max ⊂ E i+1

max for any i ∈ IN .
Remark 3.11: In the worlds depicted in Fig. 2 and Fig. 5, some portions of the obstacle boundaries

have fractal characteristics. That means they have some kind of ‘recursive’ definition, a fine structure
at arbitrarily small scales, self-similarity and this implies that the Hausdorff dimension of the world is
greater than its topological dimension.

E. View Coverage Problems
Definition 3.12: Off-line view coverage problem (generalized art-gallery problem).

Given a starting configuration q0 ∈ Cfree, find a finite collection of view configurations {q0, q1, ..., qk} ⊂
Ccon = mr(q

0,Wfree) such that:
(i)
⋃k

i=0 V(qi) = me(Ccon),
(ii) k is minimum
or correctly report that such a collection of view configurations does not exist.
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According to eq. 10 a necessary condition for the existence of a solution to the off-line view coverage
problem is that sd(me(Ccon)) <∞. Note that, in the off-line view coverage problem, no explicit restrictions
are imposed on the collection of view configurations (e.g. they can be an exploration sequence or not).
The standard art-gallery problem with a point robot and a polygonal world is a an example of off-line
view coverage problem.

Definition 3.13: On-line view coverage problem (exploration problem).
Given an initial pair (q0, E0) ∈ Cfree×pow(Wfree) such that A(q0) ⊆ E0, find a finite exploration sequence
{q0, q1, ..., qk} such that
(i) Qk = ∅,

(ii) k is minimum.
or correctly report that such an exploration sequence does not exist.

According to Corollary 3.3, a necessary condition for the existence of a solution to the above exploration
problem is that

∃l ∈ IN : E l
max = E l+1

max.

Given an (exploration sequence) solution of length k, it is Ek = E l
max with k ≥ l.

A complete exploration algorithm is capable of solving any instance of the exploration problem.

F. Pathological Cases
A pathological case is characterized by the fact that for any (q0, E0) there is no finite exploration

sequence of length k <∞ such that Qk = ∅. That means, that any exploration sequence {qi} which can
be obtained maximizing I(q, i) over Qi at each step i, corresponds to an infinite sequence {I(qi, i)} > 0
which at most tends to zero. Hence, in a pathological case, Qi never becomes empty.

There are two main class of pathological cases:
1) the first class consists in all the exploration problem instances for which there is no finite l ∈ IN

such that E l
max = E l+1

max. The cases depicted in Figs. 2 and 5 belong to such class. Here, the pathology
arises from the arduous world geometric characteristics (world pathology).

2) The second class collects all the remaining cases. The cases depicted in Fig. 3 and 4 belongs to this
second class. Here, in most cases, the pathology is caused by the ‘sensor limits’ and the discrete
nature of view sensing. Indeed, these two factors can issue the problematic situation presented
in remark 3.7 (sensor pathology). In such cases, if the robot were ideally allowed to perform a
continuous view sensing, the pathology would be removed and, thereby, the exploration could be
completed.

IV. EXPLORATION METHODS

A general exploration method (Fig. 6) searches for the next view configuration in Qk∩D(qk, k), where
D(qk, k) ⊆ C is a compact admissible set around qk at step k, whose size determines the scope of the
search. For example, if D(qk, k) = C, a global search is performed, whereas the search is local if D(qk, k)
is a neighborhood of qk.

If Qk ∩D(qk, k) is not empty, qk+1 is selected in it according to some criterion (e.g., information gain
maximization). The robot then moves to qk+1 to acquire a new view (forwarding). Otherwise, the robot
returns to a previously visited qb (b < k) such that Qk ∩D(qb, k) is not empty (backtracking). Given that
the world is static, it is not necessary to acquire again a view from qb. Hence, the actual number of views
gathered so far may be less than k.

To specify an exploration method, one must define:
• an information gain;
• a forwarding selection strategy;
• an admissible set D(qk, k);
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GENERAL EXPLORATION METHOD
if Qk ∩ D(qk, k) 6= ∅ %forwarding%

choose new qk+1 in Qk ∩ D(qk, k)
move to qk+1 and acquire sensor view

else %backtracking%
choose visited qb (b < k) such that Qk ∩ D(qb, k) 6= ∅
move to qb

Fig. 6. The k-th step of a general exploration method.

• a backtracking selection strategy.
Due the complexity associated to the computation of Sk, an efficient procedure to predict whether

Qk ∩ D(qk, k) is non-empty or not would be useful.

A. A necessary condition for a complete exploration strategy
On the whole a general exploration method selects the next view configuration in the set

k⋃
j=0

Qk ∩D(qj, k) = Qk ∩
k⋃

j=0

D(qj, k).

The set
k⋃

j=0

D(qj, k) is referred to as the total admissible set at step k. The exploration strategy ends when

the set Qk ∩
k⋃

j=0

D(qj, k) is empty (termination condition), i.e., when the total admissible set does not

contain any more informative configuration.
Recall that an exploration is completed at step k if Qk = ∅. Hence, an exploration strategy can be

considered complete if for any exploration problem instance for which a solution exists, it generates a
finite exploration sequence q0, q1, q2, ..., ql such that Ql = ∅ in finite time.

A necessary condition for the completeness of the general exploration strategy described in Sect. IV is
that the following implication holds at each step k:

Qk ∩
k⋃

j=0

D(qj, k) = ∅ ⇒ Qk = ∅. (11)

i.e., the termination condition must occur only when the exploration is actually completed. Equivalently,
it must be at each exploration step k

Qk 6= ∅ ⇒ Qk ∩
k⋃

j=0

D(qj, k) 6= ∅ (12)

Proposition 4.1: A sufficient condition for implication (12) to hold is that at each exploration step k

Qk ⊆
k⋃

j=0

D(qj, k). (13)

Remark 4.2: Condition (13) requires that, at each step k, the collection of admissible sets D(qj, k), j =
0, 1, ..., k is a cover of the informative safe region Qk. Obviously, if condition (13) holds, no information
is lost and an exploration strategy can better select at each step k the next action over the whole range
of possible informative actions.
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SET METHOD
1: if local free boundary L(qk, k) is non-empty
2: (qk+1, Uk+1) ← search configuration with

maximum utility in D(qk, k) ∩Qk

3: if Uk+1 > 0 %forwarding%
4: plan a safe path from qk to qk+1

5: move to qk+1 and acquire sensor view
6: update SET and world model
7: else
8: if Uk is not empty %backtracking%
9: select the closest configuration qb in Uk

10: plan a path on SET leading to qb

11: move to qb

12: else
13: homing

Fig. 7. The k-th step of the SET method.

In the next section, we present the SET method and we show how it satisfies condition (13) at each
step k (proposition 5.1).

V. THE SET METHOD

In the SET method, the robot incrementally builds the Sensor-based Exploration Tree (SET) data
structure. Each node of the SET represents a view configuration, while an arc between two nodes is a
safe path joining them. A pseudocode description of the k-th step of SET is given in Fig. 7. A comparison
with the general exploration method of Fig. 6 already suggests the specific choices that were made. These
are detailed in the following.

A. Information Gain
The information gain has been defined in Sect. II-D.

B. Forwarding Selection Strategy
If the condition of line 1 is met (see Sect. V-D), qk+1 is selected in D(qk, k)∩Qk so as to maximize the

utility function U(q, k) = I(q, k) (line 2). A maximum certainly exists because D(qk, k)∩Qk is compact
and I(q, k) is continuous in q. In principle, the navigation cost from qk to qk+1 could be included in U ,
to avoid erratic behaviors. However, our definition of D(qk, k) together with the adopted search strategy
(Sect. VI-A) will give the same result.

C. Admissible Set
To simplify the notation, we assume below that all the sensors have the same perception range R. This

does not imply any loss of generality.
Denote by Dr,j(q, k) the partial admissible set (r,j) around q at step k defined as the set of configurations

w such that (i) the r-th sensor center sr(w) is contained in a ball B(sj(q), ρ) with radius ρ ≥ R and center
sj(q), and (ii) sr(w) and sj(q) are mutually visible at step k, i.e., the open line segment (sr(w), sj(q))
does not intersect ∂Ek. In this definition, the j-th sensor center sj(q) acts as a ‘fixed pole’ while the r-th
sensor center sr(w) can ‘move’ in B(sj(q), ρ) as long as it remains visible from sj(q).

The admissible set D(q, k) around q at step k is defined as:

D(q, k) =
⋃

r,j∈{1,2,...,m}

(
Dr,j(q, k) ∩Qk

r

)
. (14)
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Fig. 8. A reconstructed world model at step k. Left: free boundary ∂Ek
free (red-thin) and obstacle boundary ∂Ek

obs (blue-thick). The boundary
of Ek is ∂Ek = ∂Ek

free ∪ ∂Ek
obs. Right: the partial local free boundary Lj(q

k, k) consists in the two dashed segments.

Proposition 5.1: The admissible set (14) is such that:

Qk =
k⋃

i=0

D(qi, k) (15)

Proof: Let q be a configuration of Qk 6= ∅. Hence, there exists r ∈ {1, 2, ...,m} such that q ∈ Qk
r 6= ∅.

Moreover, the following chain of implications holds
q ∈ Qk ⇒ A(qk) ⊂ Ek ⇒ sr(q) ∈ Ek .

From eq. (2) it follows6 sr(q) ∈ V(qb) for some b ≤ k. In particular, there exists j ∈ {1, 2, ...,m} such that
sr(q) ∈ Vj(q

b). Since ρ ≥ R then q ∈ Dr,j(q
b, k). Hence, from eq. (14), it is q ∈ Dr,j(q

b, k)∩Qk
r ⊂ D(qb, k)

and this implies Qk ⊆
⋃k

i=0D(qi, k). Since for any qi it is D(qi, k) ⊆ Qk, eq. (15) holds.

D. Local Free Boundary
The SET method looks at a subset of the free boundary ∂Ek

free for predicting if Qk ∩ D(qk, k) = ∅. This
results in a significant computational saving, because ∂Ek

free has dimension N − 1 whereas Qk ∩D(qk, k)
has dimension n.

Let Lj(q, k) be the partial local free boundary of the j-th sensor around q at step k (Fig. 8), i.e., the set
of points of the free boundary ∂Ek

free that (i) are contained in a ball B(sj(q), ρ+R) with center sj(q) and
radius ρ+R, and (ii) can be connected to sj(q) through a world path contained in Ek ∩B(sj(q), ρ+R).
The parameter ρ of this definition is inherited from the partial admissible sets definition.

The local free boundary L(q, k) is defined as

L(q, k) =
m⋃

j=1

Lj(q, k). (16)

L(qk, k) 6= ∅ is a necessary condition for D(qk, k) ∩Qk to be non-empty, as shown by
Proposition 5.2: The following implication holds:

L(qk, k) = ∅ ⇒ D(qk, k) ∩Qk = ∅ (17)

6For ease of presentation, we assume that if sr(q) ∈ A(q0) then sr(q) ∈
⋃k

i=1 V(qi). This assumption may however be removed by
suitably defining the admissible set D(q0, k) at q0.
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Unmovable Free
    Boundary

Explored Region

R

Fig. 9. A planar disc-shaped robot equipped with an omnidirectional range finder (R is its perception range) completes the exploration.
The remaining portion of free boundary cannot be pushed forward by any additional sensor view.

Proof: First, one proves that

Lj(q, k) = ∅ ⇒ Dr,j(q, k) ∩Qk
r = ∅, r = 1, 2, ...,m (18)

i.e., if Lj(q, k) is empty, no sensor can gain new information by moving its center around sj(q) in
B(sj(q), ρ). In fact, assume that Lj(q, k) = ∅ and there exists a sensor i ∈ {1, 2, ...,m} such that
Di,j(q, k) ∩ Qk

i 6= ∅. Hence, there exists a configuration q∗ ∈ Di,j(q, k) such that Ii(q∗, k) 6= ∅. This
implies Vi(q

∗, k)∩ ∂Ek
free 6= ∅. Hence, there exists a point p∗ ∈ ∂Ek

free such that p∗ and si(q
∗) are mutually

visible at step k. Since q∗ ∈ Di,j(q, k), the points si(q
∗) and sj(q) are also mutually visible. Hence, p∗ and

sj(q) can be connected through a world path completely contained in Ek (the two line segments p∗si(q
∗)

and si(q
∗)sj(q)). Moreover, since ‖p∗ − si(q

∗)‖ ≤ R and ‖si(q
∗)− sj(q)‖ ≤ ρ, then (triangle inequality)

p∗ ∈ B(sj(q), ρ + R). Hence, it follows p∗ ∈ Lj(q, k) 6= ∅. This contradicts the starting assumption
Lj(q, k) = ∅, and therefore eq (18) must hold. At this point, eqs. (14) and (16) are used to obtain the
thesis.
If L(qk, k) 6= ∅ a search for a new view configuration is attempted in D(qk, k)∩Qk (lines 1–2); otherwise
no search is performed, Uk+1 remains zero and the utility check (line 3) is negative. Indeed, even when
L(qk, k) 6= ∅, it may happen that D(qk, k) ∩Qk = ∅. In general, this occurs when portions of the free
boundary cannot be ‘pushed-forward’ by additional sensor views (e.g., consider the simple case of the
planar robot depicted in Fig. 9). Such portions of free boundary belong to the unmovable free boundary.

The unmovable free boundary at step k collects all the points p ∈ ∂Ek
free for which there is no

configuration q ∈ Rk such that p ∈
◦
V(q, k) (where

◦
V(q, k) is the interior of the simulated view V(q, k)).

The unmovable free boundary is due to (i) robot kinematic constraints (ii) geometric constraints (obstacles
in the current environment model) (iii) sensory limitations (limited field of view of the sensory system).

The exploration is completed at step k if the free boundary ∂Ek
free is entirely unmovable. In fact, this

clearly implies Qk = ∅. In particular, if the Local Free Boundary L(qk, k) is entirely contained in the
unmovable free boundary, then D(qk, k) ∩Qk is empty.

E. Backtracking Selection Strategy
When the search of line 2 returns Uk+1 = 0, the set D(qk, k) ∩ Qk is empty and a backtracking from

qk is attempted (line 7).
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SEARCH STRATEGY IN D(qk, k)
1: qk+1 ← 0, Uk+1 ← 0, J ← {1, 2, ...,m}
2: while Uk+1 = 0 and J 6= ∅
3: j ← select sensor j ∈ J with Lj(qk, k) 6= ∅
4: R← {1, 2, ...,m}
5: while Uk+1 = 0 and R 6= ∅
6: r ← select by priority sensor r ∈ R
7: (qk+1, Uk+1)← search configuration with

maximum utility in Dr,j(qk, k) ∩Qk
r

8: if Uk+1 = 0 R← R \ {r}
9: end while
10: if Uk+1 = 0 J ← J \ {j}
11: end while
12: return (qk+1, Uk+1)

Fig. 10. A pseudocode description of the search strategy in D(qk, k).

Let l(k) ≤ k be the last exploration step in which a view was acquired. Let Uk be the set of view
configurations qi such that (i) L(qi, k) 6= ∅, and (ii) no search has been performed in D(qi, j) ∩ Qj at a
step j > l(k) returning U j+1 = 0.

If Uk is not empty, the closest view configuration qb in Uk is selected as destination (line 9); otherwise,
exploration terminates and the robot follows a path on the SET leading back to q0 (homing, line 13).

Proposition 5.3: The following implication holds:

Uk = ∅ ⇒
k⋃

i=0

D(qi, k) ∩Qk = ∅

Proof: If qi /∈ Uk two cases are possible:
1) L(qi, k) = ∅, hence D(qi, k) ∩Qk = ∅ from Prop. 5.2.
2) L(qi, k) 6= ∅ and D(qi, j) ∩ Qj = ∅ for j > l(k) (since U j+1 = 0 was returned at a step j > l(k)).

Given that: E l(k)+1 = ... = Ek, Ql(k)+1 = ... = Qk

it follows that:
D(qi, j) ∩Qj = D(qi, k) ∩Qk = ∅

Hence, when Uk = ∅, it is
⋃k

i=0D(qi, k) ∩Qk = ∅.

F. Completeness
Proposition 5.4: Any SET exploration which ends at a finite step k is completed, in the sense that

Qk = ∅.
Proof: The SET terminates at step k if Uk = ∅, i.e., using Prop. 5.3, if

⋃k
i=0D(qi, k) ∩Qk = ∅.

Recalling eq. (15), it is Qk =
⋃k

i=0D(qi, k) =
⋃k

i=0D(qi, k) ∩Qk = ∅.
The above proposition only considers finite exploration sequences, because a compact free world may not
be ‘coverable’ by a finite sequence of views. In such ‘pathological’ cases, maximizing I(q, k) over Qk

results in an infinite sequence of view configurations qi along which I(qi, k) tends to zero. Hence, Qk

never becomes empty.

VI. IMPLEMENTATION

A. Search in the Admissible Set
In general, D(qk, k) (see Sect. V-C) is a huge search space for the utility maximization problem (line

2, Fig. 7). In order to reduce the search complexity, an heuristic search algorithm can be worked out
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SEARCH WITH GLOBAL GROWTH IN Dr,j(qk, k) ∩Qk
r

1: globally expand roadmap Gk−1 to obtain Gk

2: extract from Gk the subset D̂ of configurations
falling in Dr,j(qk, k) ∩Qk

r

3: find a configuration qk+1 of D̂ with maximum utility Uk+1

4: return (qk+1, Uk+1)

Fig. 11. A pseudocode description of the SET-GG search strategy.

by relaxing the solution optimality requirement and exploiting the search space inherent decomposition
(eq. (14)). This is described in Fig. 10.

Instead of searching for the optimal solution in D(qk, k), the algorithm searches one of the suboptimal
solutions which maximize the utility function in the partial sets Dr,j(q

k, k) ∩Qk
r , for r, j ∈ {1, 2, ...,m}.

In particular, the partial sets are visited and searched one by one until the first suboptimal solution is
found. The visit order is heuristically designed.

A possible choice is detailed in the following. For any fixed j, implication (18) relates Lj(q
k, k) to the

sets Dr,j(q
k, k) ∩ Qk

r , r = 1, 2, ...,m, and, thereby, to their suboptimal solutions. If Lj(q
k, k) = ∅, these

suboptimal solutions do not exist since Dr,j(q
k, k) ∩Qk

r = ∅, r = 1, 2, ...,m; otherwise, a measure of the
unexplored points lying in B(sj(q

k), ρ+R) can be used as an ‘optimality indicator’ of these suboptimal
solutions. Our strategy selects a sensor j with a non-empty Lj(q

k, k) and with the highest ‘optimality
indicator’ (line 3). Once j has been chosen, the sensor r is selected by priority (line 6). The highest
priority is assigned to the index r ∈ R which minimizes the distance ‖sr(q

k) − sj(q
k)‖. Accordingly,

Dj,j(q
k, k) ∩Qk

j is the first searched set. Note that it is certainly qk ∈ Dj,j(q
k, k) 6= ∅.

B. Search in Partial Admissible Sets
In the exploration process, SET incrementally updates a model of the configuration space for (i)

searching new view configurations and (ii) performing planning operations. Since generic robotic systems
typically have high-dimensional configuration spaces, a sampling based approach can be conveniently used
to incrementally grow a roadmap which captures the connectivity of the current safe region.

In particular, let Gk be the roadmap built at step k in the safe region Sk. In Gk, a node represents a
safe configuration at step k, while an arc between two nodes represents a local path that is safe at step
k and connects the two configurations. Once Ek is computed merging V(qk) with Ek−1, the roadmap Gk

is obtained expanding Gk−1. During this expansion process, additional sampled configurations which are
safe at step k are added to Gk−1. In order to find these configurations a collision checking is performed
in the reconstructed world model at step k: according to this model, Ek is the free world and ∂Ek is the
obstacle boundary. In this framework, the SET built at step k represents the path actually traveled by the
robot on the roadmap Gk.

Two main instances of the SET method can be obtained depending on the strategy used for growing the
roadmap and searching in the partial admissible sets (Fig. 10, line 7). SET with Global Growth (SET-GG),
which incrementally performs a global expansion of the roadmap Gk. SET with Local Growth (SET-LG),
which privileges a local expansion of Gk around the current view configuration qk.

1) SET-GG Search Strategy (Fig. 11): SET-GG incrementally expands Gk in the current safe region
Sk using a sampling-based approach such as a multi-query PRM algorithm, or a single-query single-tree
algorithm (RRT or EST).

2) SET-LG Search Strategy (Fig. 12): SET-LG first performs a local search around qk in the attempt
to locally maximize the utility function, then, when no local informed configurations are found, it allows
a global search (performing possible long jumps). In the local search (Fig. 12, lines 2a–2c): a single-
query single-tree algorithm such as RRT or EST is locally expanded. In the global search (Fig. 12,
lines 6a–6c): a tree is expanded without performing collision checking (lazy tree) inside Dr,j(q

k, k).
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SEARCH WITH LOCAL GROWTH IN Dr,j(qk, k) ∩Qk
r

1: if qk ∈ Dr,j(qk, k)
2: local search in Dr,j(qk, k) starting from qk:

a) expand a tree T k rooted at qk inside a C-space ball
with center qk and radius δ

b) extract from T k the subset D̂ of configurations
falling in Dr,j(qk, k) ∩Qk

r

c) find qk+1 as a configuration in D̂ with
maximum utility Uk+1

3: if Uk+1 > 0
4: attach T k to Gk−1 and return (qk+1, Uk+1)
5: else
6: global search in Dr,j(qk, k) starting from qk:

a) expand a lazy tree rooted at qk inside Dr,j(qk, k)
b) extract from lazy tree a subset D̂ of configurations q

which are safe at step k and such that Ir(q, k) 6= 0
c) use a single-query planner to find a configuration
qk+1 of D̂ which is reachable from qk through
a path that is safe at step k

d) if no reachable configurations are found in D̂
then Uk+1 ← 0

7: else
8: lazy search for a configuration qk

r,j in Dr,j(qk, k)
9: global search in Dr,j(qk, k) starting from qk

r,j : (as above)
10: return (qk+1, Uk+1)

Fig. 12. A pseudocode description of the SET-LG search strategy.

Here, RRTs are preferable for their rapid C-space exploration. In the lazy search (Fig. 12, line 8), a
lazy RRT rooted at qk is expanded (no collision checking) using the following rule: at each iteration, a
function that tosses a biased coin determines whether the new generated configuration7 qnew has to be
validated before being added to the RRT. If the coin toss yields ‘head’, qnew is added to the tree only
if ‖sr(qnew) − sj(q

k)‖ < ‖sr(qnear) − sj(q
k)‖. If the coin toss ‘tail’, no validation is performed. This

expansion proceeds until (i) a maximum number of iterations is exceeded, or (ii) a configuration qk
r,j is

found in Dr,j(q
k, k).

Note that the local search (Fig. 10, line 2), which is first attempted by SET-LG, generates a new view
configuration which is distant from qk at most δ. This mechanism automatically limits the navigation
cost of the next robot motion and avoid erratic behaviors. A shortcoming of SET-LG is a non-uniform
sampling of the free configuration space. In fact, local searches started at distinct view configurations may
expand in overlapping C-space regions. This unwanted result can be almost avoided by suitably selecting
the radius δ of the constraining C-space balls (Fig. 10, line 2a).

C. Path Planning
Once a new view configuration qk+1 has been selected, a safe path connecting qk to qk+1 is computed

by the path-planner. In the SET method, planning depends on the used search strategy. In SET-GG, a safe
path is computed on the roadmap Gk. In SET-LG, qk+1 is found either by a local search or by a global
search. In the first case, a safe path is easily computed on the locally expanded tree T k. In the second
case, the global search strategy automatically returns a path that is safe at step k (Fig. 12, line 6c).

7At each RRT iteration, qrand, qnear and qnew are determined [12].
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Fig. 13. Top: 2D cases (left to right): A6R, B3Rff, C8R. Bottom: 3D cases (left to right), D4R, E3R, F7R. In each world name, the first
letter identifies the scene, while the number quantifies the robot revolute (R) joints; ff identifies a free-flying robot.

VII. SIMULATIONS

We present simulation results obtained implementing the presented SET method in Move3D [13]. The
algorithms have been extensively tested in several scenes (both in 2D and 3D worlds) using various robots
(both fixed-base and mobile manipulators). We report here the results obtained in the six cases of Fig. 13.
Two groups of simulations were performed for each case: in the first group, a single range finder is
mounted on the tip of the robot; in the second, two additional range finders are added and mounted on the
last robot link (midway along the length of the link and close to the last robot joint). Each range finder
has a perception range R = 1 m and an opening angle α = 60◦ (robot link lengths range from 0.3 m
to 0.8 m). Its linear and angular resolution are respectively 0.01 m and 1◦. In 2D cases, the sensors can
rotate within a 120◦ planar cone; in 3D cases, the sensors can rotate within a 120◦×120◦ spatial cone. At
the start of the exploration, a free box Ã is assumed to be known from an external source. In particular,
its volume is 200% of that of A(q0) on the average.

Gridmaps are used as world models (with a 0.1m grid resolution). Quadtrees/octrees are used to represent
(and efficiently operate on) the free and obstacle boundaries. Information gain is computed via ray-casting
procedures. At each step, the partial local free boundary Lj(q, k) is computed by expanding a numerical
‘navigation’ function from sj(q) within Ek ∩ B(sj(q), ρ + R): any cell in Ek ∩ B(sj(q), ρ + R) with a
finite function value can be connected to sj(q) and is consequently inserted in Lj(q, k). Besides, Lj(q, k)
is updated only when V(qk+1) ∩ B(sj(q), ρ + R) 6= ∅. Simulations were performed on a Intel Centrino
Duo 2x1.8 GHz, 2GB RAM, running Fedora Core 8.

A. Sampling Methods
In SET-GG, the global roadmap Gk is incrementally expanded using PRM or RRT. In SET-LG, we

found that RRT is more effective. In particular, RRT-Extend is used for local searches, while RRT-
Connect is more suitable for the lazy tree expansions. In the global searches (Fig. 12, lines 6a–6c), we
obtained excellent results by building D̂ as a single configuration with maximum utility, and then using
a bidirectional RRT-ExtCon [12] as a single-query planner to find a path towards the configuration in D̂.

In all these techniques, kd-trees are used to perform nearest neighbor searches, uniform random sampling
is applied and path smoothing is performed.

B. Parameter Choice
• Admissible set. The radius ρ in the partial admissible set definition was set to 1 m, i.e, equal to R.
• RRT. Each RRT expansion is performed for a maximum number of iterations Kmax. In SET-LG, a
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Fig. 14. An exploration progress in world C8R with three range finders.

configuration space ball with radius δ is used in the local search (Fig. 12, line 2a). For both local and
global searches, we used Kmax ' 2000, whereas for lazy expansions Kmax ' 6000. As for bidirectional
RRT, a higher number of iterations was required (Kmax ' 30000). Typically, we set δ ' 0.1 δM where
δM is the maximum estimated distance between two points in C.

C. Performance Indexes
• Number of Views (NV). It is the total number of views acquired by the robot during an exploration.
• World Coverage (W%). It represents the percentage of the free world included in the final explored
region. This percentage is evaluated w.r.t. to an estimate of the free world which can be explored by
the robot, i.e., the set of points p ∈ Wfree such that p ∈ V(q) for some configuration q ∈ Cfree which is
reachable from q0 through a safe path.
• Number of Collision Detection Calls (NCDC). It is the total number of collision detection calls performed
during an exploration.
• Number of Nodes of the Global Roadmap (NNGR). It is the total number of nodes of the final roadmap
Gk.

D. Results
Two typical exploration processes obtained with SET-LG in cases C8R and F7R, both with three range

finders, are shown in Figs. 14 and 15. The obstacles (in blue) are obviously unknown to the robot. They
are incrementally reconstructed during the exploration as the obstacle boundary ∂Ek

obs (light-blue cells).
In each frame, the free boundary ∂Ek

free (red cells) is also shown. Fig. 15 shows only the portions of the
free boundary contained in the set of points p ∈ W such that p ∈ A(q) ∪ V(q) for some q ∈ C. Note
that, at the end of the exploration, the remaining free boundary can not be ‘pushed-forward’ by additional
sensor views.

Clips of these two simulations are contained in the video attachment to the paper. Other simulations
are available at the webpage http://www.dis.uniroma1.it/labrob/research/SET.html.

Table II compares the results obtained with SET-LG in the case of one range finder and three range
finders. In view of the use of RRT, results are averaged over 20 simulation runs. Note that the world
coverage is always 100%.
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Fig. 15. An exploration progress in world F7R with three range finders.

Results with 1 range finder
World NV W% NNGR NCDC

A6R (+1R) 45 100.00% 56938 446314
B3Rff (+1R) 48 100.00% 58565 495132
C8R (+1R) 54 100.00% 24662 360591
D4R (+2R) 82 100.00% 48502 323481
E3R (+2R) 79 100.00% 38734 291529
F7R (+2R) 81 100.00% 41679 232913

Results with 3 range finders
World NV W% NNGR NCDC

A6R (+3×1R) 30 100.00% 69451 554523
B3Rff (+3×1R) 36 100.00% 86244 615137

C8R (+3×1R) 40 100.00% 52944 432305
D4R (+3×2R) 64 100.00% 77121 671163
E3R (+3×2R) 65 100.00% 84087 571219
F7R (+3×2R) 70 100.00% 91474 598014

TABLE II
RESULTS OBTAINED WITH SET-LG.

E. Comparison of SET-LG with SET-GG
An extensive simulation study has showed that SET-LG performs better than SET-GG. For lack of

space, we do not report results obtained with SET-GG. In particular, we found that, for the same maximum
number of iterations Kmax, the world coverage of SET-GG decreases by 10% on the average w.r.t. SET-LG,
whereas exploration time increases by 40%.

A comparative analysis of the two methods can justify the results. At each step, the two main com-
putational costs of the SET method are due to: (i) the expansion of the roadmap Gk (ii) the extraction
of a subset of candidate configurations in D(qk, k) from Gk. In particular, at each step, SET-GG expands
a global roadmap Gk which spreads uniformly over the whole safe region as k increases. Clearly, the
number of nodes stored in Gk continuously grows. This causes a parallel, continuous increment of both
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the above computational costs. On the other hand, at each step, SET-LG mainly expands a new local tree
T k around the current view configuration qk. Each of these trees, by construction, has a bounded number
of nodes. Hence, with such mechanism, both the described computational costs are in principle bounded
and held constant.

Another important advantage of the local growth performed by SET-LG is that it focuses the search
process around the current view configuration qk. This is convenient since, at least in the initial stages of
the exploration, new informative configurations are likely to be contained in a neighbourhood of qk. On
the other hand, the global roadmap expansion results in the dispersion of new samples in uninformative
configuration-space regions. Also, smaller traveled distance in C means less energy and exploration time.

VIII. SET IN THE PRESENCE OF UNCERTAINTY

If view sensing comes with uncertainty, a probabilistic world model (e.g. a probabilistic occupancy
gridmap [14]) can be used to integrate collected sensor data. Here, a probability distribution associates
each representative point in W with its probability of being in O. Then, a point is classified as free,
occupied or unknown comparing its occupancy probability with fixed probability ranges. In this context,
SET definitions can be suitably modified. In particular, the explored region (obstacle boundary) is defined
as the set of free (occupied) points, a point is unexplored if it is unknown, and the free boundary collects
the set of unknown points lying ‘close’ to a free point. All the other definitions accordingly change and
an entropy-based measure can be used in the information gain computation.

In a general probabilistic framework, the SET method (with the above modifications) can be thought of
as a view planning module which can be suitably integrated with any localization module using a more
general definition of utility function U in the spirit of an integrated exploration [2]. Correspondingly,
motion planning should be also performed taking into account uncertainty [15].

IX. CONCLUSION

We have presented a novel method for sensor-based exploration of unknown environments by a general
robotic system equipped with multiple range finders. This extends the method originally presented in [11]
for single-sensor robotic systems and comes along with a completeness analysis.

The method is based on the incremental generation of a data structure called Sensor-based Exploration
Tree (SET). The generation of the next action is driven by information at the world level, where perception
process takes place. In particular, the frontiers of the explored region are used to guide the search for
informative view configurations. Various exploration strategies may be obtained by instantiating the general
SET method with different sampling techniques. Two of these, SET-GG and SET-LG have been described
and compared by simulations in non-trivial 2D and 3D worlds.

We are currently working to provide an accurate complexity analysis of the method, improve its
completeness analysis and implement the SET method in presence of uncertainty both in sensing and
control. Future work will address an experimental validation of SET on a real robotic system, and an
extension of the method to a team of robotic systems equipped with multiple sensors along the lines
of [5].
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