Lecture 2 Basic Concepts

Luigi Freda

ALCOR Lab DIAG University of Rome "La Sapienza"

January 26, 2018

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- 4 Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- 4 Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

Parametric vs Non-parametric Models

- we will focus on probabilistic models of the form:
 - $\checkmark p(y|\mathbf{x})$ for supervised learning
 - $\checkmark p(\mathbf{x})$ for unsupervised learning

there are many ways to define such models

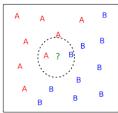
- one of the most important distinction:
 - √ parametric models: have a fixed number of parameters
 - √ non-parametric models: the number of parameters grow with the amount of training data
- pros and cons
 - parametric models have the advantage of often being faster to use, but the disadvantage of making stronger assumptions about the nature of the data distributions
 - √ non-parametric models are more flexible, but often computationally intractable for large datasets

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- 4 Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

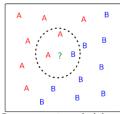
K-nearest Neighbors Classifier

- a simple example of a non-parametric classifier is the K nearest neighbor (KNN) classifier
- this simply "looks at" the K points in the training set that are nearest to the test input x
- memory-based learning, it can be derived from probabilistic framework

1-nearest neighbor



2-nearest neighbor



3-nearest neighbor

K-nearest Neighbors Classifier

more formally

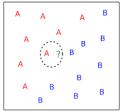
$$\rho(y = c | \mathbf{x}, \mathcal{D}, K) = \frac{1}{N} \sum_{i \in N_K(\mathbf{x}, \mathcal{D})} \mathbb{I}(y_i = c)$$

where

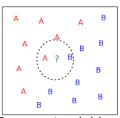
• $N_K(x, \mathcal{D})$ is the set of indices of the K nearest points to \mathbf{x}

•
$$\mathbb{I}(e) = \begin{cases} 1 & \text{if } e = \text{true} \\ 0 & \text{if } e = \text{false} \end{cases}$$
 is the **indicator function**

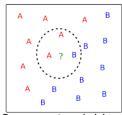
N.B.: the higher the value of K, the more we average local data



1-nearest neighbor



2-nearest neighbor



3-nearest neighbor

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

The Curse of Dimensionality 1/2

- in general KNN classifier is simple and works well
- problem: it has poor performance with high dimensional inputs

why?

consider an high-dimensional input space (D>>1)

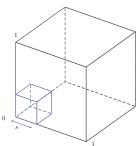
- the number of training instances needs to grow **exponentially** with the number of dimensions *D* to maintain a given **accuracy**
- the method becomes no longer local

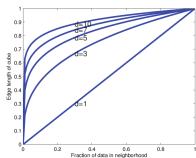
let's see this in more detail..

The Curse of Dimensionality

2/2

- assume data are uniformly distributed in the D-dimensional unit cube
- suppose we estimate the density of class labels around a test point x by "growing"
 a hyper-cube around x until it contains a desired fraction f of the data points
- the expected edge length of this cube will be $e_D(f) = f^{1/D}$
- if D=10, and we want to base our estimate on f=10% of the data, then $e_{0.1}=0.8$ and we need to extend the cube 80% along each dimension around x!!
- with f = 10% and D = 10 the method is **no more local** and we have to look at points that are far away





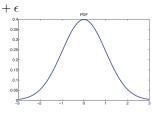
- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

Linear Regression

Linear Regression

$$y(x) = \mathbf{w}^T \mathbf{x} + \epsilon = \sum_{j=1}^{D} w_j x_j + \epsilon$$

- $\mathbf{w} \in \mathbb{R}^D$ is the weight vector
- ullet $\epsilon \sim \mathcal{N}(\mu, \sigma^2)$ is the **residual error**
- $\mathcal{N}(\mu, \sigma^2)$ is the Gaussian distribution



This entails

$$p(y|\mathbf{x},\theta) = \mathcal{N}(\mu(\mathbf{x}), \sigma^2(x)) = \mathcal{N}(\mathbf{w}^T\mathbf{x}, \sigma^2)$$

- $\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = [w_0, \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}]^T$ where $\mathbf{x} = [1, \tilde{\mathbf{x}}]^T$
- $\theta = (\mathbf{w}, \sigma^2)$ are the model parameters

Linear Regression

Polynomial Regression

if we replace ${\bf x}$ by a non-linear function $\phi({\bf x})$

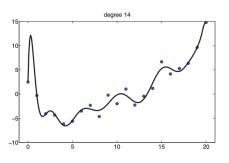
$$y(x) = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$$

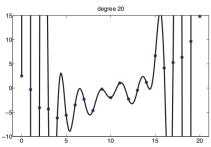
we now have

$$p(y|\mathbf{x},\theta) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \sigma^2)$$

- $\mu(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$ (basis function expansion)
- if $x \in \mathbb{R}$ we can use $\phi(x) = [1, x, x^2, ..., x^d]$ which is the vector of **polynomial** basis functions
- in general if $\mathbf{x} \in \mathbb{R}^D$, in principle, we could use a **multivariate polynomial** expansion $\mathbf{w}^T \phi(\mathbf{x}) = \sum w_{i_1 i_2 \dots i_D} \prod_{j=1}^D x_j^{i_j}$ up to a certain degree d
- $\theta = (\mathbf{w}, \sigma^2)$ are the model parameters

Linear Regression





- input: 21 data points (x_i, y_i)
- left: polynomial of degrees 14
- right: polynomial of degrees 20

?do we obtain a better result by increasing the model complexity?

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- 4 Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

Logistic Regression

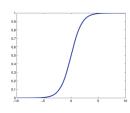
Logistic Regression

?can we generalize linear regression $(y \in \mathbb{R})$ to binary classification $(y \in \{0,1\})$? two steps:

- replace $\mathcal{N}(\mu(\mathbf{x}), \sigma^2(x))$ with $\mathrm{Ber}(y|\mu(\mathbf{x}))$ (we want $y \in \{0, 1\}$)
- ② replace $\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with $\mu(\mathbf{x}) = \mathrm{sigm}(\mathbf{w}^T \mathbf{x})$ (we want $0 \le \mu(\mathbf{x}) \le 1$)

where

- Ber $(y|\mu(\mathbf{x})) = \mu(\mathbf{x})^{\mathbb{I}(y=1)}(1-\mu(\mathbf{x}))^{\mathbb{I}(y=0)}$ is the Bernoulli distribution
- $\mathbb{I}(e) = 1$ if e is true, $\mathbb{I}(e) = 0$ if e is false (indicator function)
- $\operatorname{sigm}(\eta) = \frac{1}{1 + \exp(-\eta)}$ is the sigmoid function (aka logistic function)



Logistic Regression

Logistic Regression

• replace
$$\mathcal{N}(\mu(\mathbf{x}), \sigma^2(x))$$
 with $\mathrm{Ber}(y|\mu(\mathbf{x}))$

2 replace
$$\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
 with $\mu(\mathbf{x}) = \operatorname{sigm}(\mathbf{w}^T \mathbf{x})$

(we want
$$y \in \{0,1\}$$
)

(we want $0 \le \mu(\mathbf{x}) \le 1$)

hence, we started from a linear regression

$$p(y|\mathbf{x}, \theta) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$

where $y \in \mathbb{R}$

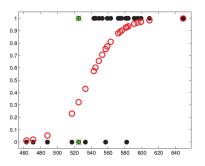
to obtain a logistic regression

$$p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\text{sigm}(\mathbf{w}^T\mathbf{x}))$$

where $y \in \{0, 1\}$

Logistic Regression

Logistic regression - an example



- solid black dots are data (x_i, y_i)
- open red circles are **predicted probabilities**: $p(y_i = 1 | x_i, \mathbf{w}) = \text{sigm}(w_0 + w_1 x_i)$
- data is **not** linearly separable
- \bullet in particular, here we have different y_i for a same value x_i

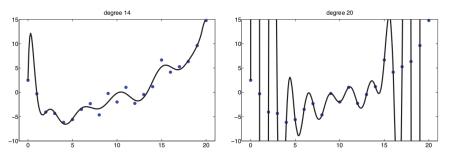
in general when data is not linearly separable, we can try to use the basis function

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- 4 Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

Overfitting

Overfitting

- when we fit highly flexible models, we should avoid trying to model every minor variation in the input
- these minor variations are more likely to be noise than "true" signal

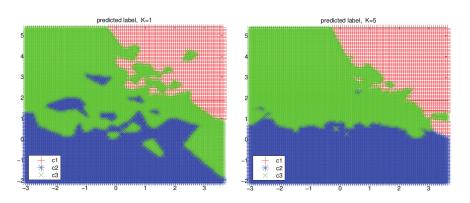


!pay attention: do not to fit noise!

Overfitting

Overfitting

an example with KNN



N.B.: the higher the value of K, the more we average local data

- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

- suppose we have different models M_i , how to choose? (e.g. we have to select K for the KNN classifier)
- if f(x) is a classifier we can compute its **misclassification rate**

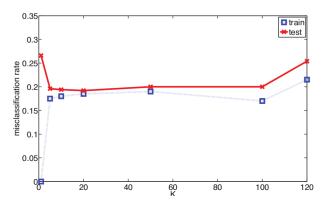
$$\operatorname{err}(f,\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

- consider a KNN classifier: in principle, we can select K so as to have the **minimum misclassification rate** on the training set
- but our model is valuable if it returns a low misclassification rate over future data (generalization error) and not on the training set itself
- ullet training set \mathcal{D} \longrightarrow for estimating the model
- ullet test set $\mathcal{T}\longrightarrow$ for computing the generalization error
- $\mathcal{D} \cap \mathcal{T} = \emptyset$

misclassification rate

$$\operatorname{err}(f,\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

• select K so as to have the minimum misclassification rate



N.B.: on the left (small K) overfitting, on the right (large K) underfitting

- ullet unfortunately we have not access to the test set (future data) to pick the model of the right complexity K
- \bullet we can create a "test set" by partitioning the available training set ${\cal D}$ in two parts:
 - f 0 the part actually used for training the model $ilde{\mathcal D}$
 - $oldsymbol{arrho}$ the part used for selecting the model complexity, the **validation set** $\mathcal V$
- ullet then we have a partition $\mathcal{D}=\mathcal{ ilde{D}}\cup\mathcal{V}$ with $\mathcal{ ilde{D}}\cap\mathcal{V}=\emptyset$

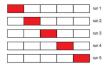
common procedure

- ullet use 80% of the data for $ilde{\mathcal{D}}$ and 20% for ${\mathcal{V}}$
- ullet fit all the models M_i by using $ilde{\mathcal{D}}$
- pick the **best model** M^* by evaluating all the M_i on \mathcal{V} (find the model M^* with minimum misclassification error)
- ullet fit the selected model M^* on the full training set ${\mathcal D}$ (now use full info)

problem: if $N = |\mathcal{D}|$ is very small, we won't have enough data to train the model cross validation

- split the data \mathcal{D} in K equal folds $\{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_K\}$
- for each model M_i : for each $k \in \{1, 2, ..., K\}$ use $\tilde{\mathcal{D}}_k \triangleq \mathcal{D} \setminus \mathcal{D}_k$ to train model M_i and evaluate it on $\mathcal{V}_k \triangleq \mathcal{D}_k$ by computing the misclassification rate $err(M_i, \mathcal{V}_k)$
- for each model M_i : compute the average error $err(M_i) = \sum_{k=1}^{K} err(M_i, \mathcal{V}_k)$ and use it as an approx. for the test/generalization error of M_i
- select the best model $M^* = \operatorname{argmin} \operatorname{err}(M_i)$ and fit it on the full dataset \mathcal{D}

N.B.: in general K=5, if $K=\mathit{N}$ we get a method called **leave-one out cross** validation



- Parametric vs Non-parametric Models
 - Parametric vs Non-parametric Models
- 2 Non-parametric Models
 - A Simple Non-parametric Classifier: K-nearest Neighbors
 - The Curse of Dimensionality
- Parametric Models
 - Linear Regression
 - Logistic Regression
- Other Basic Concepts
 - Overfitting
 - Model Selection
 - No Free Lunch Theorem

No Free Lunch Theorem

All models are wrong, but some models are useful - George Box

- machine learning is concerned with devising
 - different models
 - different algorithms to fit them
- there is no single best model that works optimally for all kinds of problems!
- why? assumptions limit our domain of application!
- we have to design speed-accuracy-complexity tradeoffs selecting a suitable model and an appropriate algorithm

Credits

Kevin Murphy's book