Lecture 6 Linear Regression

Luigi Freda

ALCOR Lab DIAG University of Rome "La Sapienza"

January 28, 2018

Intro

Linear Regression

MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

Ridge Regression

- MLE Issues
- Basic Idea

🕽 Intro

Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

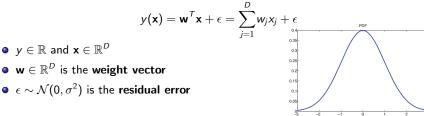
A Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

Linear Regression Model Specification

Linear Regression



This entails

$$p(y|\mathbf{x},\theta) = \mathcal{N}(\mu(\mathbf{x}),\sigma^2) = \mathcal{N}(\mathbf{w}^T\mathbf{x},\sigma^2)$$

Linear Regression Polynomial Model Specification

Polynomial Regression

if we replace **x** by a non-linear function $\phi(\mathbf{x})$

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$$

we now have

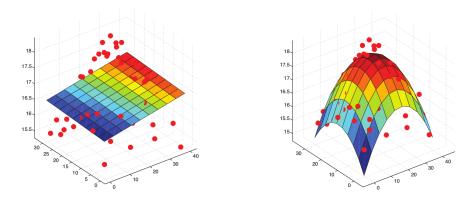
$$p(y|\mathbf{x}, \theta) = \mathcal{N}(\mathbf{w}^{T}\phi(\mathbf{x}), \sigma^{2})$$

- $\mu(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$ (basis function expansion)
- if $x \in \mathbb{R}$ we can use $\phi(x) = [1, x, x^2, ..., x^d]$ which is the vector of **polynomial** basis functions
- in principle, if $\mathbf{x} \in \mathbb{R}^{D}$ we could use a multivariate polynomial expansion $\mathbf{w}^{T} \phi(\mathbf{x}) = \sum w_{i_{1}i_{2}...i_{D}} \prod_{j=1}^{D} x_{j}^{i_{j}}$ up to a certain degree d
- $\boldsymbol{\theta} = (\mathbf{w}, \sigma^2)$ are the model parameters

N.B.: note that the model is still linear in the parameters \boldsymbol{w}

Linear Regression 2D Data

vertical axis is the temperature, horizontal axes are location within a room



- *left*: fitted function is a plane $\hat{f}(\mathbf{x}) = w_0 + w_1x_1 + w_2x_2$
- right: fitted function is quadratic $\hat{f}(\mathbf{x}) = w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2$

1) Intro

• Linear Regression

MLE - Least Squares

Basic Idea

- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

A Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

MLE - Least Squares

• the MLE of a parameter θ is computed as

$$\hat{oldsymbol{ heta}}_{\textit{MLE}} riangleq rgmax_{ heta} p(\mathcal{D}|oldsymbol{ heta})$$

• given a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ of iid samples, the **log-likelihood** can be computed as

$$I(\boldsymbol{ heta}) \triangleq \log p(\mathcal{D}|\boldsymbol{ heta}) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \boldsymbol{ heta})$$

 maximizing the log-likelihood is equivalent to minimize the Negative Log-Likelihood (NLL)

$$\mathsf{NLL}(\boldsymbol{ heta}) \triangleq -\sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i, \boldsymbol{ heta})$$

MLE - Least Squares

• inserting the linear regression model into the log-likelihood returns

$$I(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \right) \right] =$$
$$= -\frac{\text{RSS}(\mathbf{w})}{2\sigma^2} - \frac{N}{2} \log(2\pi\sigma^2)$$

where RSS stands for Residual Sum of Squares

$$\mathsf{RSS}(\mathbf{w}) \triangleq \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

aka Sum of Squared Errors (SSE), i.e SSE = RSS

• the Mean Squared Error (MSE) is $MSE \triangleq SSE/N$

the log-likelihood is

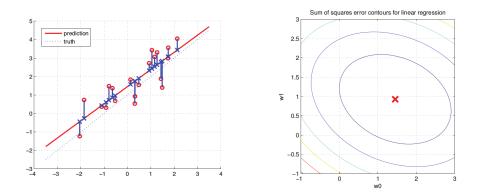
$$I(\boldsymbol{ heta}) = -rac{\mathsf{RSS}(\mathbf{w})}{2\sigma^2} - rac{N}{2}\log(2\pi\sigma^2)$$

• if we define the **residual errors** $\epsilon_i \triangleq y_i - \mathbf{w}^T \mathbf{x}_i$, one has

$$\mathsf{RSS}(\mathbf{w}) = \|\boldsymbol{\epsilon}\|_2^2 = \sum_{i=1}^N \epsilon_i^2$$

• the MLE for w minimizes the RSS, and for this reason the method is called **least** squares

MLE - Least Squares



• left: red circles are training points; blue crosses are approximations

- in least squares we try to minimize the sum of squared distances from each training point to its approximation (i.e. the sum of the lengths of the little vertical blue lines)
- *right*: contours of the RSS error; the surface is a **bowl** with a **unique minimum**

1) Intro

• Linear Regression

MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

Derivation of the MLE

• the NLL can be rewritten as

$$\mathsf{NLL}(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 = \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = \frac{1}{2} \mathbf{w}^T (\mathbf{X}^T \mathbf{X}) \mathbf{w} - \mathbf{w}^T (\mathbf{X}^T \mathbf{y}) + \frac{1}{2} \mathbf{y}^T \mathbf{y}$$

where $\mathbf{y} = [y_1,...,y_N]^T \in \mathbb{R}^N$, $\mathbf{X} \in \mathbb{R}^{N \times D}$ is the design matrix

in order to minimize the NLL we have to compute its gradient

$$\mathbf{g}(\mathbf{w}) = (\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - (\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

and equating it to zero we get the normal equation

$$\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}-\mathbf{y})=0$$

• the corresponding solution is called the **Ordinary Least Squares** (OLS)

$$\hat{\mathbf{w}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• considering that $\mathbf{X}^T \mathbf{X} = \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T$ and $\mathbf{X}^T \mathbf{y} = \sum_i \mathbf{x}_i y_i$, one has

$$\hat{\mathbf{w}}_{OLS} = \left(\sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \sum_i \mathbf{x}_i y_i$$

1) Intro

• Linear Regression

MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea
- 5 Regularization Effects of Big Data
 - Idea and Learning Curves

Least Squares

• let's consider the optimization problem we solve

$$\hat{\mathbf{w}}_{OLS} = \operatorname*{argmin}_{\mathbf{w}} \; rac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

• this optimization problem is equivalent to solve the normal equation

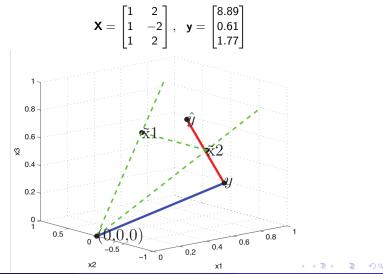
$$\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}-\mathbf{y})=0$$

- these equations have an elegant geometric interpretation
- the columns of $\mathbf{X} = [\tilde{\mathbf{x}}_1, ..., \tilde{\mathbf{x}}_D] \in \mathbb{R}^{N \times D}$ define a linear subspace in \mathbb{R}^N
- N.B.: the columns $\tilde{\mathbf{x}}_i \in \mathbb{R}^N$ of **X** are different from the rows $\mathbf{x}_i \in \mathbb{R}^D$ of **X**
- the vector **y** lives in \mathbb{R}^N
- the least squares problem above is equivalent to

$$\underset{\hat{\mathbf{y}} \in \text{span}(\{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_D\})}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 \qquad (\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = w_1 \tilde{\mathbf{x}}_1 + \dots + w_D \tilde{\mathbf{x}}_D)$$

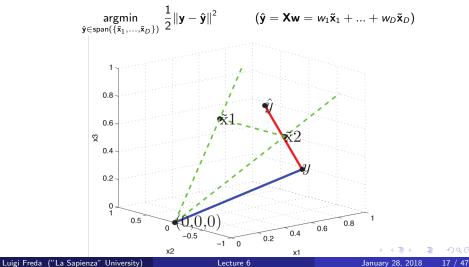
Least Squares

• let's assume N = 3 and D = 2



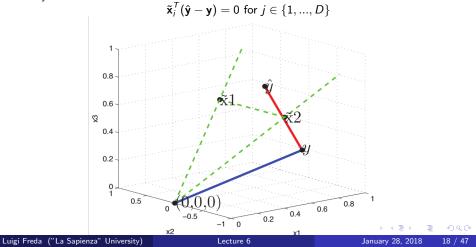
Least Squares

• we seek a vector $\hat{\mathbf{y}} \in \mathbb{R}^N$ that lies in the linear subspace defined by the columns of \mathbf{X} and is close as possible to $\mathbf{y} \in \mathbb{R}^N$

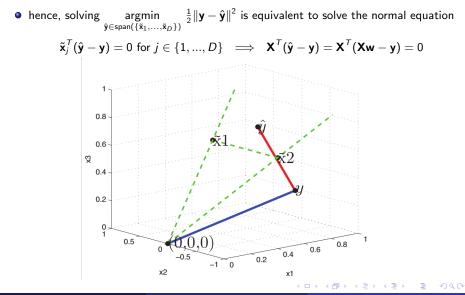


Least Squares

• if we want to minimize the residual $\underset{\hat{y} \in span(\{\tilde{x}_1, ..., \tilde{x}_D\})}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|^2$ then we also want the residual vector $\mathbf{y} - \hat{\mathbf{y}}$ to be orthogonal to the linear space (hyperplane) defined by the columns of \mathbf{X}

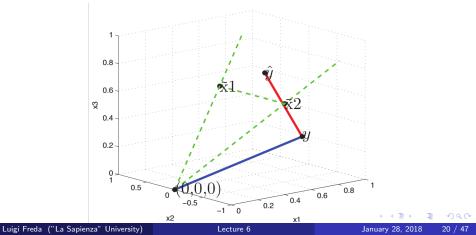


Least Squares



Least Squares

- solving $\mathbf{X}^{T}(\mathbf{X}\mathbf{w} \mathbf{y}) = 0$ returns $\hat{\mathbf{w}} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$
- we can get the orthogonal projection $\hat{y} = X\hat{w} = X(X^TX)^{-1}X^Ty$
- the projection matrix $\mathbf{P} \triangleq \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is called the **hat matrix**, since it "puts the hat" on **y**



Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

3

Convexity

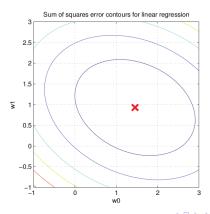
- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea
- 5 Regularization Effects of Big Data
 - Idea and Learning Curves

Convexity

- when solving least squares, we noted that the NLL had a bowl shape with a **unique minimum**
- the technical term for functions like this is convex
- convex functions play a very important role in machine learning



Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

3 (

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

• a set S is **convex** if for any $\theta, \theta' \in S$ we have

$$\lambda oldsymbol{ heta} + (1-\lambda)oldsymbol{ heta}' \in \mathcal{S} \;\; orall \lambda \in [0,1]$$

that is, if we draw a line from θ to θ' , all points on the line lie inside the set S• for instance in this figure

we have a convex set on the left and a nonconvex set on the right

Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

3

Convexity

- Idea
- Convex Set

Convex Function

Convexity and Optimization

Ridge Regression

- MLE Issues
- Basic Idea

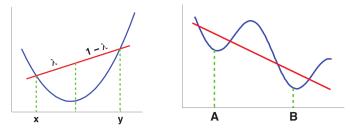
5 Regularization Effects of Big Data

Convexity Convex Function Definition

a function f(θ) is convex if it is defined on a convex set and if, for any θ, θ' ∈ S, and for any λ ∈ [0, 1], we have

$$f(\lambda oldsymbol{ heta} + (1-\lambda)oldsymbol{ heta}') \leq \lambda f(oldsymbol{ heta}) + (1-\lambda)f(oldsymbol{ heta}')$$

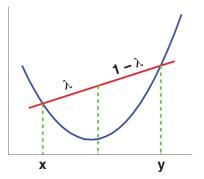
- a function $f(\theta)$ is strictly convex if the inequality is strict
- a function $f(\theta)$ is **concave** if $-f(\theta)$ is convex
- for instance, in the following figure



the function on the left is convex and the function on the right is neither concave nor convex

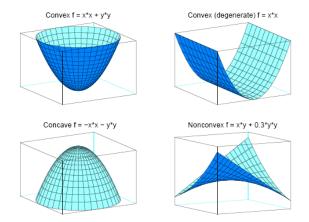
Convexity Convex Function Definition

- examples of scalar convex functions include θ^2 , e^{θ} and $\theta \log \theta$ (for $\theta > 0$)
- examples of concave functions include log θ and $\sqrt{\theta}$



- intuitively, a (strictly) convex function has a *bowl shape*, and hence has a unique global minimum θ* corresponding to the bottom of the bowl
- in the scalar case, a convex function has its second derivative positive everywhere, i.e. $\frac{d^2}{d\theta^2}f(\theta) > 0$

Convexity Convex Function Examples



• convex(concave) functions have a unique global minimum(maximum)

3 D (3 D)

Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

3

Convexity

- Idea
- Convex Set
- Convex Function

Convexity and Optimization

Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

Theorem 1

a twice-continuously differentiable, multivariate function $f(\theta) \in \mathbb{R}$ is convex iff its Hessian is positive definite for all θ

the Hessian matrix H = ∂²f(θ)/∂θ² of a function f(θ) ∈ ℝ is defined as follows (element-wise)

$$\mathbf{H}_{jk} = \frac{\partial^2 f(\boldsymbol{\theta})}{\partial \theta_j \partial \theta_k}$$

- the Hessian is symmetric since $\frac{\partial^2 f(\theta)}{\partial \theta_j \partial \theta_k} = \frac{\partial^2 f(\theta)}{\partial \theta_k \partial \theta_j}$ (Schwartz's theorem)
- recall that a matrix **H** is **positive definite** iff $\mathbf{v}^T \mathbf{H} \mathbf{v} > 0$ for any $\mathbf{v} \neq 0$
- a convex function has a bowl shape

• a convex function can be approximated about its unique global minimum θ^* with a bowl shaped quadratic function (paraboloid in 3D)

$$egin{aligned} f(m{ heta}) &pprox f(m{ heta}^*) + rac{\partial f}{\partial m{ heta}} \Big|_{m{ heta}^*} (m{ heta} - m{ heta}^*) + rac{1}{2} (m{ heta} - m{ heta}^*)^T \mathbf{H}(m{ heta}^*) (m{ heta} - m{ heta}^*) = \ &= f(m{ heta}^*) + rac{1}{2} (m{ heta} - m{ heta}^*)^T \mathbf{H}(m{ heta}^*) (m{ heta} - m{ heta}^*) \end{aligned}$$

where we used the fact that at the minimum θ^* one has $\frac{\partial f}{\partial \theta}|_{\theta^*} = 0$ and we know that $\mathbf{H}(\theta^*) > 0$

Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

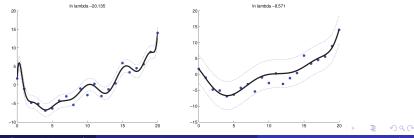
- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea

Ridge Regression

- one problem with ML estimation is that it can result in overfitting
- the reason that the MLE can overfit is that it is picking the parameter values that are the best for modeling the **training data**
- but if the data is noisy, such parameters often result in complex functions
- as a simple example, suppose we fit a degree 14 polynomial to N = 21 data points using least squares. The resulting curve is very "wiggly"
- in this case, overfitting equals interpolating noise
- if we change the data a little bit our estimate of **w** will change a lot (unstable estimation)

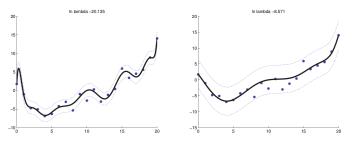


• the corresponding least squares coefficients \mathbf{w} (excluding w_0) are as follows

6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013,

8524.540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526

- there are many large positive and negative numbers
- these variations balance out exactly to make the curve "wiggle" in just the right way so that it almost perfectly interpolates the data



Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea

Ridge Regression

• we can encourage the parameters to be small, thus resulting in a smoother curve, by using a zero-mean Gaussian prior

$$p(\mathbf{w}) = \prod_j \mathcal{N}(w_j | \mathbf{0}, \tau^2)$$

where the precision $1/ au^2$ controls the strength of the prior

• the corresponding MAP estimation problem becomes

$$\hat{\mathbf{w}}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{w}|\mathcal{D}) = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathcal{D}|\mathbf{w})p(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmax}} \log p(\mathcal{D}|\mathbf{w}) + \log p(\mathbf{w}) =$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log \mathcal{N}(y_i | w_0 + \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2) + \sum_{i=1}^{D} \log \mathcal{N}(w_j | \mathbf{0}, \tau^2)$$

• it is simple to show that this is equivalent to minimize

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + \mathbf{w}^T \mathbf{x}_i)^2) + \lambda \|\mathbf{w}\|_2^2 = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$

where $\lambda \triangleq \sigma^2 / \tau^2$ and $\| \mathbf{w} \|_2^2 = \mathbf{w}^T \mathbf{w}$

• the first term is the MSE/NLL as usual, and the second term with $\lambda > 0$ is a complexity penalty

• minimization problem

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + \mathbf{w}^T \mathbf{x}_i)^2) + \lambda \|\mathbf{w}\|_2^2 = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$

• the solution is

$$\hat{\mathbf{w}}_{\textit{ridge}} = (\lambda \mathbf{I}_D + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• this technique is known as ridge regression

э

Intro

• Linear Regression

2 MLE - Least Squares

- Basic Idea
- MLE Derivation
- Geometric Interpretation

Convexity

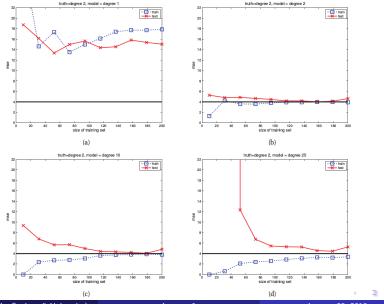
- Idea
- Convex Set
- Convex Function
- Convexity and Optimization

4 Ridge Regression

- MLE Issues
- Basic Idea

5 Regularization Effects of Big Data

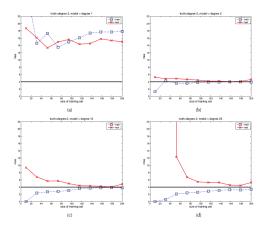
- regularization is the most common way to avoid overfitting
- another effective approach which is not always available is to use **lots of** data
- intuitively, the more training data we have, the better we will be able to learn
- let's consider a polynomial regression and let's plot the Mean Squared Error (MSE) incurred on the test set achieved by models of different degrees vs N = |D|
- a plot of error vs training set size is known as a learning curve



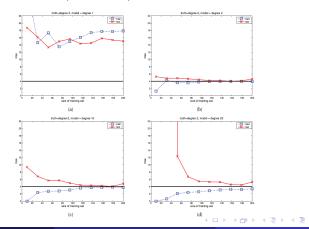
Luigi Freda ("La Sapienza" University)

January 28, 2018 40 / 47

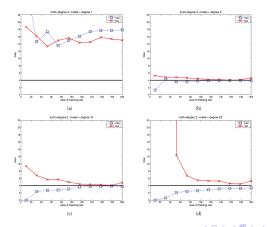
- the truth is a degree 2 polynomial
- we try fitting polynomials of degrees 1, 2, 10 and 25 to this data (respectively models M₁, M₂, M₁₀ and M₂₅)



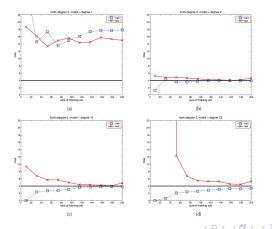
- the level of the plateau for the test error consists of two terms
 - noise floor: an irreducible component that all models incur, due to the intrinsic variability of the generating process
 - Structural error: a component that depends on the discrepancy between the generating process (the "truth") and the model



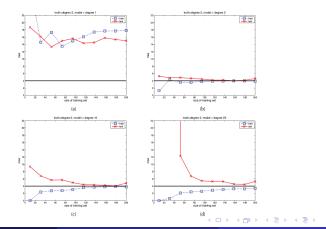
- the structural error for models M_2 , M_{10} and M_{25} is zero, since they are all able to capture the true generating process
- the structural error for \mathcal{M}_1 is substantial, which is evident from the fact that the plateau occurs high above the noise floor



- for any model that is expressive enough to capture the truth (i.e., one with small structural error), the **test error** will go to the **noise floor** as $N \to \infty$
- the error will typically go to zero faster for simpler models (fewer parameters to estimate)



- for finite training sets, there will be some discrepancy between the parameters that we estimate and the best parameters that we could estimate given the particular model class
- this discrepancy is called **approximation error**, and goes to zero as $N \to \infty$, but it goes to zero faster for simpler models



- in domains with lots of data, simple methods can work surprisingly well
- however, there are still reasons to study more **sophisticated learning methods**, because there will always be problems for which we have **little data**
- for example, even in such a data-rich domain as web search, as soon as we want to start **personalizing the results**, the amount of data available for any given user starts to look small again (relative to the complexity of the problem)

• Kevin Murphy's book

2