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Linear Regression

linear regression

y ∈ R, x ∈ RD and w ∈ RD and ε ∼ N (0, σ2)

y(x) = wTx + ε =
D∑
j=1

wjxj + ε

p(y |x, θ) = N (wTx, σ2)

polynomial regression

we replace x by a non-linear function φ(x) ∈ Rd+1

y(x) = wTφ(x) + ε

p(y |x, θ) = N (wTφ(x), σ2)

µ(x) = wTφ(x) (basis function expansion)

φ(x) = [1, x , x2, ..., xd ] is the vector of polynomial basis functions

N.B.: in both cases θ = (w, σ2) are the model parameters
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Logistic Regression
From Linear to Logistic Regression

?can we generalize linear regression (y ∈ R) to binary classification (y ∈ {0, 1})?

we can follow two steps:

1 replace y ∼ N (µ(x), σ2(x)) with y ∼ Ber(y |µ(x)) (we want y ∈ {0, 1})
2 replace µ(x) = wTx with µ(x) = sigm(wTx) (we want 0 ≤ µ(x) ≤ 1)

where

Ber(y |µ(x)) = µ(x)I(y=1)(1− µ(x))I(y=0) is the Bernoulli distribution

I(e) = 1 if e is true, I(e) = 0 otherwise (indicator function)

sigm(η) = exp(η)
1+exp(η)

= 1
1+exp(−η) is the sigmoid function (aka logistic function)

Luigi Freda (”La Sapienza” University) Lecture 7 January 28, 2018 5 / 39



Logistic Regression
From Linear to Logistic Regression

following the two steps:

1 replace y ∼ N (µ(x), σ2(x)) with y ∼ Ber(y |µ(x)) (we want y ∈ {0, 1})
2 replace µ(x) = wTx with µ(x) = sigm(wTx) (we want 0 ≤ µ(x) ≤ 1)

we start from a linear regression

p(y |x, θ) = N (wTx, σ2) where y ∈ R

to obtain a logistic regression

p(y |x,w) = Ber(y |sigm(wTx)) where y ∈ {0, 1}
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Logistic Regression
Linear Decision Boundary

p(y |x,w) = Ber(y |sigm(wTx)) where y ∈ {0, 1}

p(y = 1|x,w) = sigm(wTx) = exp(wT x)

1+exp(wT x)
= 1

1+exp(−wT x)

p(y = 0|x,w) = 1− p(y = 1|x,w) = 1− sigm(wTx) = sigm(−wTx)

p(y = 1|x,w) = p(y = 0|x,w) = 0.5 entails

sigm(wTx) = 0.5 =⇒ wTx = 0

hence we have a linear decision boundary wTx = 0
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Logistic Regression
Linear Decision Boundary

linear decision boundary wTx = 0 (hyperplane passing through the origin)

indeed, as in the linear regression case wTx = [w0, w̃
T x̃]T where x = [1, x̃]T and x̃i

are the actual data samples

as a matter of fact, our linear decision boundary has the form wT x̃ + w0 = 0

hyperplane aTx + b = 0 equivalent to nTx− d = 0 where n is the normal unit
vector (i.e. ‖n‖ = 1) and d ∈ R is the distance origin-hyperplane

one can define x0 , nd and rewrite the plane equation as nT (x− x0) = 0
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Logistic Regression
Non-Linear Decision Boundary

we can replace x by a non-linear function φ(x) and obtain a

p(y |x,w) = Ber(y |sigm(wTφ(x)))

if x ∈ R we can use φ(x) = [1, x , x2, ..., xd ] which is the vector of polynomial
basis functions

in principle, if x ∈ RD we could use a multivariate polynomial expansion

wTφ(x) =
∑

wi1 i2...iD

∏D
j=1 x

ij
j up to a certain degree d

p(y = 1|x,w) = sigm(wTφ(x))

p(y = 0|x,w) = sigm(−wTφ(x))

p(y = 1|x,w) = p(y = 0|x,w) = 0.5 entails

sigm(wTφ(x)) = 0.5 =⇒ wTφ(x) = 0

hence we have a non-linear decision boundary wTφ(x) = 0
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Logistic Regression
A 1D Example

solid black dots are data (xi , yi )

open red circles are predicted probabilities: p(y = 1|x ,w) = sigm(w0 + w1x)

in this case data is not linearly separable

the linear decision boundary is w0 + w1x = 0 which entails x = −w0/w1

in general, when data is not linearly separable, we can try to use the basis function
expansion as a further step
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Logistic Regression
A 2D Example

left: a linear decision boundary on the ”feature plane” (x1, x2)

right: a 3D plot of p(y = 1|x,w) = sigm(w0 + w1x2 + w2x2)
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Logistic Regression
Examples

left: non-linearly separable data with a linear decision boundary

right: the same dataset fit with a quadratic model (and quadratic decision
boundary)
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Logistic Regression
Examples

another example of non-linearly separable data which is fit by using a polynomial model
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Negative Log-Likelihood
Gradient and Hessian

the likelihood for the logistic regression is given by

p(D|θ) =
∏
i

p(yi |xi ,θ) =
∏
i

Ber(yi |µi ) =
∏
i

µ
I(yi=1)
i (1− µi )

I(yi=0)

where µi , sigm(wTxi )

the Negative Log-Likelihood (NLL) is given by

NLL = − log p(D|θ) =
∑
i

[
I(yi = 1) logµi + I(yi = 0) log(1− µi )

]
=

=
∑
i

[
yi logµi + (1− yi ) log(1− µi )

]
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Negative Log-Likelihood
Gradient and Hessian

we have

NLL =
∑
i

[
yi logµi + (1− yi ) log(1− µi )

]
where µi , sigm(wTxi )

in order to find the MLE we have to minimize the NLL and impose ∂NLL
∂wi

= 0

given σ(a) , sigm(a) = 1
1+e−a it is possible to show (homework ex 8.3) that

dσ(a)

da
= σ(a)(1− σ(a))

using the previous equation and the chain rule for calculus we can compute the
gradient g

g ,
d

dw
NLL(w) =

∑
i

∂NLL

∂µi

dµi

dai

dai
dw

=
∑
i

(µi − yi )xi

where µi = σ(ai ) and ai , wTxi
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Negative Log-Likelihood
Gradient and Hessian

the gradient can be rewritten as

g =
∑
i

(µi − yi )xi = XT (µ− y)

where X is the design matrix, µ , [µ1, ..., µN ]T , y , [y1, ..., yN ]T and
µi , sigm(wTxi )

the Hessian is

H ,
d

dw
g(w)T =

∑
i

(dµi

dai

dai
dw

)
xT
i =

∑
i

µi (1− µi )xix
T
i = XTSX

where S , diag(µi (1− µi ))

it is easy to see that H > 0 (vTHv = (vTXT )S(Xv) = zTSz > 0 )

given that H > 0 we have that the NLL is convex and has a unique global
minimum

unlike linear regression, there is no closed form for the MLE (since the gradient
contains non-linear functions)

we need to use an optimization algorithm to compute the MLE
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Gradient Descent
The Gradient

given a continuously differentiable function f (θ) ∈ R we can use first order
Taylor’s expansion an approximate

f (θ) ≈ f (θ∗) + g(θ∗)T (θ − θ∗)

where the gradient g is defined as

g(θ) ,
∂f

∂θ
=


∂f
∂θ1
...
∂f
∂θm


hence, in a neighbourhood of θ∗ one has

∆f ≈ gT∆θ

it is easy to see that with ‖∆θ‖ = η (‖v‖ ,
√

vTv)

1 ∆f is max when ∆θ = +η g
‖g‖

2 ∆f is min when ∆θ = −η g
‖g‖ (steepest descent)

where ĝ , g
‖g‖ is the unit vector in the gradient direction
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Gradient Descent

the simplest algorithm for unconstrained optimization is gradient descent (aka
steepest descent)

θk+1 = θk − ηgk

where η ∈ R+ is the step size (or learning rate) and gk , g(θk)

starting from an initial guess θ0, at each step k we move towards the negative
gradient direction −gk
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Gradient Descent

problem: how to choose the step size η?

left: using a fixed step size η = 0.1

right: using a fixed step size η = 0.6

if we use constant step size and we make it too small, convergence will be very
slow, but if we make it too large, the method can fail to convergence at all
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Gradient Descent
Line Search

convergence to the global optimum: the method is guaranteed to converge to
the global optimum θ∗ no matter where we start

global convergence: the method is guaranteed to converge to a local optimum
no matter where we start

let’s develop a more stable method for picking eta so as to have global convergence

consider a general update
θk+1 = θk + ηdk

where η > 0 and dk are respectively our step size and selected descent direction

by Taylor’s theorem, we have

f (θk + ηdk) ≈ f (θk) + ηgT
k dk

if η is chosen small enough and dk = −gk , then f (θk + ηdk) < f (θk) (since
∆f ≈ −ηgTg < 0)

but we don’t want to choose the step size η too small, or we will move very slowly
and may not reach the minimum

line minimization of line search: pick η so as to minimize

φ(η) , f (θk + ηdk)
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Gradient Descent
Line Search

in order to minimize
φ(η) , f (θk + ηdk)

we must impose

dφ

dη
=
∂f

∂θ

T
∣∣∣∣
θk+ηdk

dk = g(θk + ηdk)Tdk = 0

since in the gradient descent method we have dk = gk , the following condition
must be satisfied

g(θk + ηdk)Tgk = 0
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Gradient Descent
Line Search

from the following condition

g(θk + ηdk)Tgk = 0

we have that consecutive descent directions are orthogonal and we have a zig-zag
behaviour
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Newton’s Method
The Hessian

given a twice-continuously differentiable function f (θ) ∈ R we can use a second
order Taylor’s expansion to approximate

f (θ) ≈ f (θ∗) + g(θ∗)T (θ − θ∗) +
1

2
(θ − θ∗)TH(θ∗)(θ − θ∗)

the Hessian matrix H = ∂2f (θ)

∂θ2 of a function f (θ) ∈ R is defined as follows
(element-wise)

Hij =
∂2f (θ)

∂θi∂θj
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Newton’s Method

hence if we consider an optimization algorithm, at step k we have

f (θ) ≈ fquad(θ) , f (θk) + gT
k (θ − θk) +

1

2
(θ − θk)THk(θ − θk)

in order to find θk+1 we can then minimize fquad(θ)

fquad(θ) = θTAθ + bTθ + c

where

A =
1

2
Hk , b = gk −Hkθk , c = fk − gT

k θk +
1

2
θT
k Hkθk

we can then impose

∂fquad
∂θ

= 0 =⇒ 2Aθ + b = 0 =⇒ Hkθ + gk −Hkθk = 0

the minimum of fquad is then

θ = θk −H−1
k gk

in the Newton’s method one selects dk = −H−1
k gk
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Newton’s Method

in the Newton’s method one selects dk = −H−1
k gk

the step dk = −H−1
k gk is what should be added to θk to minimize the second

order approximation of f around θk

in its simplest form, Newton’s method requires that Hk > 0 (the function is
strictly convex)

if not, the objective function is not convex, then Hk may not be positive definite,
so dk = −H−1

k gk may not be a descent direction
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Newton’s Method
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Iteratively Reweighted Least Squares
IRLS

let us now apply Newton’s algorithm to find the MLE for binary logistic regression

the Newton update at iteration k + 1 for this model is as follows (using ηk = 1,
since the Hessian is exact)

wk+1 = wk −H−1
k gk

since
gk = XT (µk − y), Hk = XTSkX

we have
wk+1 = wk + (XTSkX)−1XT (y − µk) =

= (XTSkX)−1[(XTSkX)wk + XT (y − µk)] = (XTSkX)−1XT (SkXwk + y − µk)

then we have
wk+1 = (XTSkX)−1XTSkzk

where zk , Xwk + S−1
k (y − µk)

Luigi Freda (”La Sapienza” University) Lecture 7 January 28, 2018 32 / 39



Iteratively Reweighted Least Squares
IRLS

the following equation
wk+1 = (XTSkX)−1XTSkzk

with zk , Xwk + S−1
k (y − µk) is an example of weighted least squares problem,

which is a minimizer of

J =
N∑
i=1

ski (zki − wTxi )
2 = ‖zk − Xwk‖S−1

k

where Sk = diag(ski ), zk = [zk1, ..., zkN ]T

since Sk is a diagonal matrix we can write the element-wise update

zki = wT
k xi +

yi − µki

µki (1− µki )

where µk = [µk1, ..., µkN ]T

this algorithm is called iteratively reweighted least squares (IRLS)
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Iteratively Reweighted Least Squares
IRLS
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Regularized Logistic Regression

consider the linearly separable 2D data in the above figure

there are different decision boundaries that can perfectly separate the training data
(4 examples are shown in different colors)

the likelihood surface is shown: it is unbounded as we move up and to the right in
parameter space, along a ridge where w2/w1 = 2.35 (the indicated diagonal line)

Luigi Freda (”La Sapienza” University) Lecture 7 January 28, 2018 36 / 39



Regularized Logistic Regression

we can maximize the likelihood by driving ‖w‖ to infinity (subject to being on this
line), since large regression weights make the sigmoid function very steep, turning
it into an infinitely steep sigmoid function I(wTx > w0)

consequently the MLE is not well defined when the data is linearly separable
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Regularized Logistic Regression

to prevent this, we can move to MAP estimation and hence add a regularization
component in the classification setting (as we did in the ridge regression)

to regularize the problem we can simply add spherical prior at the origin
p(w) = N (x|0, λI) and then maximize the posterior p(w|D) ∝ p(D|w)p(w)

as a consequence a simple l2 regularization can be easily obtained by using the
following new objective, gradient and Hessian

f ′(w) = NLL(w) + λwTw

g′(w) = g(w) + 2λw

H′(w) = H(w) + 2λI

these modified equations can be used into any of the presented optimizers
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